*2(*2(x, y), z) -> *2(x, *2(y, z))
*2(+2(x, y), z) -> +2(*2(x, z), *2(y, z))
*2(x, +2(y, f1(z))) -> *2(g2(x, z), +2(y, y))
↳ QTRS
↳ DependencyPairsProof
*2(*2(x, y), z) -> *2(x, *2(y, z))
*2(+2(x, y), z) -> +2(*2(x, z), *2(y, z))
*2(x, +2(y, f1(z))) -> *2(g2(x, z), +2(y, y))
*12(+2(x, y), z) -> *12(x, z)
*12(*2(x, y), z) -> *12(y, z)
*12(+2(x, y), z) -> *12(y, z)
*12(x, +2(y, f1(z))) -> *12(g2(x, z), +2(y, y))
*12(*2(x, y), z) -> *12(x, *2(y, z))
*2(*2(x, y), z) -> *2(x, *2(y, z))
*2(+2(x, y), z) -> +2(*2(x, z), *2(y, z))
*2(x, +2(y, f1(z))) -> *2(g2(x, z), +2(y, y))
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
*12(+2(x, y), z) -> *12(x, z)
*12(*2(x, y), z) -> *12(y, z)
*12(+2(x, y), z) -> *12(y, z)
*12(x, +2(y, f1(z))) -> *12(g2(x, z), +2(y, y))
*12(*2(x, y), z) -> *12(x, *2(y, z))
*2(*2(x, y), z) -> *2(x, *2(y, z))
*2(+2(x, y), z) -> +2(*2(x, z), *2(y, z))
*2(x, +2(y, f1(z))) -> *2(g2(x, z), +2(y, y))
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
*12(x, +2(y, f1(z))) -> *12(g2(x, z), +2(y, y))
*2(*2(x, y), z) -> *2(x, *2(y, z))
*2(+2(x, y), z) -> +2(*2(x, z), *2(y, z))
*2(x, +2(y, f1(z))) -> *2(g2(x, z), +2(y, y))
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDPOrderProof
*12(+2(x, y), z) -> *12(x, z)
*12(*2(x, y), z) -> *12(y, z)
*12(+2(x, y), z) -> *12(y, z)
*12(*2(x, y), z) -> *12(x, *2(y, z))
*2(*2(x, y), z) -> *2(x, *2(y, z))
*2(+2(x, y), z) -> +2(*2(x, z), *2(y, z))
*2(x, +2(y, f1(z))) -> *2(g2(x, z), +2(y, y))
The following pairs can be oriented strictly and are deleted.
The remaining pairs can at least be oriented weakly.
*12(*2(x, y), z) -> *12(y, z)
*12(*2(x, y), z) -> *12(x, *2(y, z))
Used ordering: Polynomial interpretation [21]:
*12(+2(x, y), z) -> *12(x, z)
*12(+2(x, y), z) -> *12(y, z)
POL(*2(x1, x2)) = 1 + x1 + x2
POL(*12(x1, x2)) = x1
POL(+2(x1, x2)) = x1 + x2
POL(f1(x1)) = 0
POL(g2(x1, x2)) = 0
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
*12(+2(x, y), z) -> *12(x, z)
*12(+2(x, y), z) -> *12(y, z)
*2(*2(x, y), z) -> *2(x, *2(y, z))
*2(+2(x, y), z) -> +2(*2(x, z), *2(y, z))
*2(x, +2(y, f1(z))) -> *2(g2(x, z), +2(y, y))
The following pairs can be oriented strictly and are deleted.
The remaining pairs can at least be oriented weakly.
*12(+2(x, y), z) -> *12(x, z)
*12(+2(x, y), z) -> *12(y, z)
POL(*12(x1, x2)) = x1
POL(+2(x1, x2)) = 1 + x1 + x2
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ PisEmptyProof
*2(*2(x, y), z) -> *2(x, *2(y, z))
*2(+2(x, y), z) -> +2(*2(x, z), *2(y, z))
*2(x, +2(y, f1(z))) -> *2(g2(x, z), +2(y, y))