implies2(not1(x), y) -> or2(x, y)
implies2(not1(x), or2(y, z)) -> implies2(y, or2(x, z))
implies2(x, or2(y, z)) -> or2(y, implies2(x, z))
↳ QTRS
↳ DependencyPairsProof
implies2(not1(x), y) -> or2(x, y)
implies2(not1(x), or2(y, z)) -> implies2(y, or2(x, z))
implies2(x, or2(y, z)) -> or2(y, implies2(x, z))
IMPLIES2(x, or2(y, z)) -> IMPLIES2(x, z)
IMPLIES2(not1(x), or2(y, z)) -> IMPLIES2(y, or2(x, z))
implies2(not1(x), y) -> or2(x, y)
implies2(not1(x), or2(y, z)) -> implies2(y, or2(x, z))
implies2(x, or2(y, z)) -> or2(y, implies2(x, z))
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ QDPOrderProof
IMPLIES2(x, or2(y, z)) -> IMPLIES2(x, z)
IMPLIES2(not1(x), or2(y, z)) -> IMPLIES2(y, or2(x, z))
implies2(not1(x), y) -> or2(x, y)
implies2(not1(x), or2(y, z)) -> implies2(y, or2(x, z))
implies2(x, or2(y, z)) -> or2(y, implies2(x, z))
The following pairs can be oriented strictly and are deleted.
The remaining pairs can at least be oriented weakly.
IMPLIES2(x, or2(y, z)) -> IMPLIES2(x, z)
Used ordering: Polynomial interpretation [21]:
IMPLIES2(not1(x), or2(y, z)) -> IMPLIES2(y, or2(x, z))
POL(IMPLIES2(x1, x2)) = x2
POL(not1(x1)) = 0
POL(or2(x1, x2)) = 1 + x2
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
IMPLIES2(not1(x), or2(y, z)) -> IMPLIES2(y, or2(x, z))
implies2(not1(x), y) -> or2(x, y)
implies2(not1(x), or2(y, z)) -> implies2(y, or2(x, z))
implies2(x, or2(y, z)) -> or2(y, implies2(x, z))
The following pairs can be oriented strictly and are deleted.
The remaining pairs can at least be oriented weakly.
IMPLIES2(not1(x), or2(y, z)) -> IMPLIES2(y, or2(x, z))
POL(IMPLIES2(x1, x2)) = x1·x2
POL(not1(x1)) = 1 + x1
POL(or2(x1, x2)) = 1 + x1
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ PisEmptyProof
implies2(not1(x), y) -> or2(x, y)
implies2(not1(x), or2(y, z)) -> implies2(y, or2(x, z))
implies2(x, or2(y, z)) -> or2(y, implies2(x, z))