Consider the TRS R consisting of the rewrite rules 1: f(0) -> 0 2: f(s(0)) -> s(0) 3: f(s(s(x))) -> p(h(g(x))) 4: g(0) -> pair(s(0),s(0)) 5: g(s(x)) -> h(g(x)) 6: h(x) -> pair(p(x) + q(x),p(x)) 7: p(pair(x,y)) -> x 8: q(pair(x,y)) -> y 9: x + 0 -> x 10: x + s(y) -> s(x + y) 11: f(s(s(x))) -> p(g(x)) + q(g(x)) 12: g(s(x)) -> pair(p(g(x)) + q(g(x)),p(g(x))) There are 15 dependency pairs: 13: F(s(s(x))) -> P(h(g(x))) 14: F(s(s(x))) -> H(g(x)) 15: G(s(x)) -> H(g(x)) 16: H(x) -> p(x) +# q(x) 17: H(x) -> Q(x) 18: H(x) -> P(x) 19: x +# s(y) -> x +# y 20: F(s(s(x))) -> p(g(x)) +# q(g(x)) 21: F(s(s(x))) -> P(g(x)) 22: F(s(s(x))) -> Q(g(x)) 23: F(s(s(x))) -> G(x) 24: G(s(x)) -> p(g(x)) +# q(g(x)) 25: G(s(x)) -> Q(g(x)) 26: G(s(x)) -> P(g(x)) 27: G(s(x)) -> G(x) The approximated dependency graph contains 2 SCCs: {19} and {27}. - Consider the SCC {19}. There are no usable rules. By taking the polynomial interpretation [s](x) = x + 1 and [+#](x,y) = x + y + 1, rule 19 is strictly decreasing. - Consider the SCC {27}. There are no usable rules. By taking the polynomial interpretation [G](x) = [s](x) = x + 1, rule 27 is strictly decreasing. Hence the TRS is terminating.