Consider the TRS R consisting of the rewrite rules 1: 0 + 0 -> 0 2: 0 + 1 -> 1 3: 0 + 2 -> 2 4: 0 + 3 -> 3 5: 0 + 4 -> 4 6: 0 + 5 -> 5 7: 0 + 6 -> 6 8: 0 + 7 -> 7 9: 0 + 8 -> 8 10: 0 + 9 -> 9 11: 1 + 0 -> 1 12: 1 + 1 -> 2 13: 1 + 2 -> 3 14: 1 + 3 -> 4 15: 1 + 4 -> 5 16: 1 + 5 -> 6 17: 1 + 6 -> 7 18: 1 + 7 -> 8 19: 1 + 8 -> 9 20: 1 + 9 -> c(1,0) 21: 2 + 0 -> 2 22: 2 + 1 -> 3 23: 2 + 2 -> 4 24: 2 + 3 -> 5 25: 2 + 4 -> 6 26: 2 + 5 -> 7 27: 2 + 6 -> 8 28: 2 + 7 -> 9 29: 2 + 8 -> c(1,0) 30: 2 + 9 -> c(1,1) 31: 3 + 0 -> 3 32: 3 + 1 -> 4 33: 3 + 2 -> 5 34: 3 + 3 -> 6 35: 3 + 4 -> 7 36: 3 + 5 -> 8 37: 3 + 6 -> 9 38: 3 + 7 -> c(1,0) 39: 3 + 8 -> c(1,1) 40: 3 + 9 -> c(1,2) 41: 4 + 0 -> 4 42: 4 + 1 -> 5 43: 4 + 2 -> 6 44: 4 + 3 -> 7 45: 4 + 4 -> 8 46: 4 + 5 -> 9 47: 4 + 6 -> c(1,0) 48: 4 + 7 -> c(1,1) 49: 4 + 8 -> c(1,2) 50: 4 + 9 -> c(1,3) 51: 5 + 0 -> 5 52: 5 + 1 -> 6 53: 5 + 2 -> 7 54: 5 + 3 -> 8 55: 5 + 4 -> 9 56: 5 + 5 -> c(1,0) 57: 5 + 6 -> c(1,1) 58: 5 + 7 -> c(1,2) 59: 5 + 8 -> c(1,3) 60: 5 + 9 -> c(1,4) 61: 6 + 0 -> 6 62: 6 + 1 -> 7 63: 6 + 2 -> 8 64: 6 + 3 -> 9 65: 6 + 4 -> c(1,0) 66: 6 + 5 -> c(1,1) 67: 6 + 6 -> c(1,2) 68: 6 + 7 -> c(1,3) 69: 6 + 8 -> c(1,4) 70: 6 + 9 -> c(1,5) 71: 7 + 0 -> 7 72: 7 + 1 -> 8 73: 7 + 2 -> 9 74: 7 + 3 -> c(1,0) 75: 7 + 4 -> c(1,1) 76: 7 + 5 -> c(1,2) 77: 7 + 6 -> c(1,3) 78: 7 + 7 -> c(1,4) 79: 7 + 8 -> c(1,5) 80: 7 + 9 -> c(1,6) 81: 8 + 0 -> 8 82: 8 + 1 -> 9 83: 8 + 2 -> c(1,0) 84: 8 + 3 -> c(1,1) 85: 8 + 4 -> c(1,2) 86: 8 + 5 -> c(1,3) 87: 8 + 6 -> c(1,4) 88: 8 + 7 -> c(1,5) 89: 8 + 8 -> c(1,6) 90: 8 + 9 -> c(1,7) 91: 9 + 0 -> 9 92: 9 + 1 -> c(1,0) 93: 9 + 2 -> c(1,1) 94: 9 + 3 -> c(1,2) 95: 9 + 4 -> c(1,3) 96: 9 + 5 -> c(1,4) 97: 9 + 6 -> c(1,5) 98: 9 + 7 -> c(1,6) 99: 9 + 8 -> c(1,7) 100: 9 + 9 -> c(1,8) 101: x + c(y,z) -> c(y,x + z) 102: c(x,y) + z -> c(x,y + z) 103: c(0,x) -> x 104: c(x,c(y,z)) -> c(x + y,z) There are 51 dependency pairs: 105: 1 +# 9 -> C(1,0) 106: 2 +# 8 -> C(1,0) 107: 2 +# 9 -> C(1,1) 108: 3 +# 7 -> C(1,0) 109: 3 +# 8 -> C(1,1) 110: 3 +# 9 -> C(1,2) 111: 4 +# 6 -> C(1,0) 112: 4 +# 7 -> C(1,1) 113: 4 +# 8 -> C(1,2) 114: 4 +# 9 -> C(1,3) 115: 5 +# 5 -> C(1,0) 116: 5 +# 6 -> C(1,1) 117: 5 +# 7 -> C(1,2) 118: 5 +# 8 -> C(1,3) 119: 5 +# 9 -> C(1,4) 120: 6 +# 4 -> C(1,0) 121: 6 +# 5 -> C(1,1) 122: 6 +# 6 -> C(1,2) 123: 6 +# 7 -> C(1,3) 124: 6 +# 8 -> C(1,4) 125: 6 +# 9 -> C(1,5) 126: 7 +# 3 -> C(1,0) 127: 7 +# 4 -> C(1,1) 128: 7 +# 5 -> C(1,2) 129: 7 +# 6 -> C(1,3) 130: 7 +# 7 -> C(1,4) 131: 7 +# 8 -> C(1,5) 132: 7 +# 9 -> C(1,6) 133: 8 +# 2 -> C(1,0) 134: 8 +# 3 -> C(1,1) 135: 8 +# 4 -> C(1,2) 136: 8 +# 5 -> C(1,3) 137: 8 +# 6 -> C(1,4) 138: 8 +# 7 -> C(1,5) 139: 8 +# 8 -> C(1,6) 140: 8 +# 9 -> C(1,7) 141: 9 +# 1 -> C(1,0) 142: 9 +# 2 -> C(1,1) 143: 9 +# 3 -> C(1,2) 144: 9 +# 4 -> C(1,3) 145: 9 +# 5 -> C(1,4) 146: 9 +# 6 -> C(1,5) 147: 9 +# 7 -> C(1,6) 148: 9 +# 8 -> C(1,7) 149: 9 +# 9 -> C(1,8) 150: x +# c(y,z) -> C(y,x + z) 151: x +# c(y,z) -> x +# z 152: c(x,y) +# z -> C(x,y + z) 153: c(x,y) +# z -> y +# z 154: C(x,c(y,z)) -> C(x + y,z) 155: C(x,c(y,z)) -> x +# y The approximated dependency graph contains one SCC: {150-155}. - Consider the SCC {150-155}. By taking the polynomial interpretation [0] = [1] = [2] = [3] = [4] = [5] = [6] = [7] = [8] = [9] = 1 and [+](x,y) = [+#](x,y) = [c](x,y) = [C](x,y) = x + y + 1, the rules in {20,29,30,38-40,47-50,56-60,65-70,74-80,83-90,92-102,104,150,152,154} are weakly decreasing and the rules in {1-19,21-28,31-37,41-46,51-55,61-64,71-73,81,82,91,103,151,153,155} are strictly decreasing. There is one new SCC. - Consider the SCC {154}. By taking the polynomial interpretation [0] = [1] = [2] = [3] = [4] = [5] = [6] = [7] = [8] = [9] = 1, [+](x,y) = [c](x,y) = x + y + 1 and [C](x,y) = y + 1, the rules in {20,29,30,38-40,47-50,56-60,65-70,74-80,83-90,92-102,104} are weakly decreasing and the rules in {1-19,21-28,31-37,41-46,51-55,61-64,71-73,81,82,91,103,154} are strictly decreasing. Hence the TRS is terminating.