pred1(s1(x)) -> x
minus2(x, 0) -> x
minus2(x, s1(y)) -> pred1(minus2(x, y))
quot2(0, s1(y)) -> 0
quot2(s1(x), s1(y)) -> s1(quot2(minus2(x, y), s1(y)))
↳ QTRS
↳ DependencyPairsProof
pred1(s1(x)) -> x
minus2(x, 0) -> x
minus2(x, s1(y)) -> pred1(minus2(x, y))
quot2(0, s1(y)) -> 0
quot2(s1(x), s1(y)) -> s1(quot2(minus2(x, y), s1(y)))
QUOT2(s1(x), s1(y)) -> QUOT2(minus2(x, y), s1(y))
MINUS2(x, s1(y)) -> PRED1(minus2(x, y))
QUOT2(s1(x), s1(y)) -> MINUS2(x, y)
MINUS2(x, s1(y)) -> MINUS2(x, y)
pred1(s1(x)) -> x
minus2(x, 0) -> x
minus2(x, s1(y)) -> pred1(minus2(x, y))
quot2(0, s1(y)) -> 0
quot2(s1(x), s1(y)) -> s1(quot2(minus2(x, y), s1(y)))
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
QUOT2(s1(x), s1(y)) -> QUOT2(minus2(x, y), s1(y))
MINUS2(x, s1(y)) -> PRED1(minus2(x, y))
QUOT2(s1(x), s1(y)) -> MINUS2(x, y)
MINUS2(x, s1(y)) -> MINUS2(x, y)
pred1(s1(x)) -> x
minus2(x, 0) -> x
minus2(x, s1(y)) -> pred1(minus2(x, y))
quot2(0, s1(y)) -> 0
quot2(s1(x), s1(y)) -> s1(quot2(minus2(x, y), s1(y)))
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDPOrderProof
↳ QDP
MINUS2(x, s1(y)) -> MINUS2(x, y)
pred1(s1(x)) -> x
minus2(x, 0) -> x
minus2(x, s1(y)) -> pred1(minus2(x, y))
quot2(0, s1(y)) -> 0
quot2(s1(x), s1(y)) -> s1(quot2(minus2(x, y), s1(y)))
The following pairs can be oriented strictly and are deleted.
The remaining pairs can at least be oriented weakly.
MINUS2(x, s1(y)) -> MINUS2(x, y)
POL(MINUS2(x1, x2)) = x2
POL(s1(x1)) = 1 + x1
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ PisEmptyProof
↳ QDP
pred1(s1(x)) -> x
minus2(x, 0) -> x
minus2(x, s1(y)) -> pred1(minus2(x, y))
quot2(0, s1(y)) -> 0
quot2(s1(x), s1(y)) -> s1(quot2(minus2(x, y), s1(y)))
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDPOrderProof
QUOT2(s1(x), s1(y)) -> QUOT2(minus2(x, y), s1(y))
pred1(s1(x)) -> x
minus2(x, 0) -> x
minus2(x, s1(y)) -> pred1(minus2(x, y))
quot2(0, s1(y)) -> 0
quot2(s1(x), s1(y)) -> s1(quot2(minus2(x, y), s1(y)))
The following pairs can be oriented strictly and are deleted.
The remaining pairs can at least be oriented weakly.
QUOT2(s1(x), s1(y)) -> QUOT2(minus2(x, y), s1(y))
POL(0) = 0
POL(QUOT2(x1, x2)) = x1
POL(minus2(x1, x2)) = x1
POL(pred1(x1)) = x1
POL(s1(x1)) = 1 + x1
pred1(s1(x)) -> x
minus2(x, s1(y)) -> pred1(minus2(x, y))
minus2(x, 0) -> x
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ PisEmptyProof
pred1(s1(x)) -> x
minus2(x, 0) -> x
minus2(x, s1(y)) -> pred1(minus2(x, y))
quot2(0, s1(y)) -> 0
quot2(s1(x), s1(y)) -> s1(quot2(minus2(x, y), s1(y)))