(0) Obligation:

Q restricted rewrite system:
The TRS R consists of the following rules:

f(x, 0) → s(0)
f(s(x), s(y)) → s(f(x, y))
g(0, x) → g(f(x, x), x)

Q is empty.

(1) AAECC Innermost (EQUIVALENT transformation)

We have applied [NOC,AAECCNOC] to switch to innermost. The TRS R 1 is

f(x, 0) → s(0)
f(s(x), s(y)) → s(f(x, y))

The TRS R 2 is

g(0, x) → g(f(x, x), x)

The signature Sigma is {g}

(2) Obligation:

Q restricted rewrite system:
The TRS R consists of the following rules:

f(x, 0) → s(0)
f(s(x), s(y)) → s(f(x, y))
g(0, x) → g(f(x, x), x)

The set Q consists of the following terms:

f(x0, 0)
f(s(x0), s(x1))
g(0, x0)

(3) DependencyPairsProof (EQUIVALENT transformation)

Using Dependency Pairs [AG00,LPAR04] we result in the following initial DP problem.

(4) Obligation:

Q DP problem:
The TRS P consists of the following rules:

F(s(x), s(y)) → F(x, y)
G(0, x) → G(f(x, x), x)
G(0, x) → F(x, x)

The TRS R consists of the following rules:

f(x, 0) → s(0)
f(s(x), s(y)) → s(f(x, y))
g(0, x) → g(f(x, x), x)

The set Q consists of the following terms:

f(x0, 0)
f(s(x0), s(x1))
g(0, x0)

We have to consider all minimal (P,Q,R)-chains.

(5) DependencyGraphProof (EQUIVALENT transformation)

The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 1 SCC with 2 less nodes.

(6) Obligation:

Q DP problem:
The TRS P consists of the following rules:

F(s(x), s(y)) → F(x, y)

The TRS R consists of the following rules:

f(x, 0) → s(0)
f(s(x), s(y)) → s(f(x, y))
g(0, x) → g(f(x, x), x)

The set Q consists of the following terms:

f(x0, 0)
f(s(x0), s(x1))
g(0, x0)

We have to consider all minimal (P,Q,R)-chains.

(7) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


F(s(x), s(y)) → F(x, y)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
F(x1, x2)  =  F(x2)
s(x1)  =  s(x1)

Recursive path order with status [RPO].
Quasi-Precedence:
[F1, s1]

Status:
s1: [1]
F1: multiset


The following usable rules [FROCOS05] were oriented: none

(8) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

f(x, 0) → s(0)
f(s(x), s(y)) → s(f(x, y))
g(0, x) → g(f(x, x), x)

The set Q consists of the following terms:

f(x0, 0)
f(s(x0), s(x1))
g(0, x0)

We have to consider all minimal (P,Q,R)-chains.

(9) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(10) TRUE