(0) Obligation:
Q restricted rewrite system:
The TRS R consists of the following rules:
+(p1, p1) → p2
+(p1, +(p2, p2)) → p5
+(p5, p5) → p10
+(+(x, y), z) → +(x, +(y, z))
+(p1, +(p1, x)) → +(p2, x)
+(p1, +(p2, +(p2, x))) → +(p5, x)
+(p2, p1) → +(p1, p2)
+(p2, +(p1, x)) → +(p1, +(p2, x))
+(p2, +(p2, p2)) → +(p1, p5)
+(p2, +(p2, +(p2, x))) → +(p1, +(p5, x))
+(p5, p1) → +(p1, p5)
+(p5, +(p1, x)) → +(p1, +(p5, x))
+(p5, p2) → +(p2, p5)
+(p5, +(p2, x)) → +(p2, +(p5, x))
+(p5, +(p5, x)) → +(p10, x)
+(p10, p1) → +(p1, p10)
+(p10, +(p1, x)) → +(p1, +(p10, x))
+(p10, p2) → +(p2, p10)
+(p10, +(p2, x)) → +(p2, +(p10, x))
+(p10, p5) → +(p5, p10)
+(p10, +(p5, x)) → +(p5, +(p10, x))
Q is empty.
(1) QTRSRRRProof (EQUIVALENT transformation)
Used ordering:
Recursive path order with status [RPO].
Quasi-Precedence:
[+2, p1, p2, p5, p10]
Status:
+2: [1,2]
p1: multiset
p2: multiset
p5: multiset
p10: multiset
With this ordering the following rules can be removed by the rule removal processor [LPAR04] because they are oriented strictly:
+(p1, p1) → p2
+(p1, +(p2, p2)) → p5
+(p5, p5) → p10
+(+(x, y), z) → +(x, +(y, z))
+(p1, +(p1, x)) → +(p2, x)
+(p1, +(p2, +(p2, x))) → +(p5, x)
+(p2, +(p2, p2)) → +(p1, p5)
+(p2, +(p2, +(p2, x))) → +(p1, +(p5, x))
+(p5, +(p5, x)) → +(p10, x)
(2) Obligation:
Q restricted rewrite system:
The TRS R consists of the following rules:
+(p2, p1) → +(p1, p2)
+(p2, +(p1, x)) → +(p1, +(p2, x))
+(p5, p1) → +(p1, p5)
+(p5, +(p1, x)) → +(p1, +(p5, x))
+(p5, p2) → +(p2, p5)
+(p5, +(p2, x)) → +(p2, +(p5, x))
+(p10, p1) → +(p1, p10)
+(p10, +(p1, x)) → +(p1, +(p10, x))
+(p10, p2) → +(p2, p10)
+(p10, +(p2, x)) → +(p2, +(p10, x))
+(p10, p5) → +(p5, p10)
+(p10, +(p5, x)) → +(p5, +(p10, x))
Q is empty.
(3) QTRSRRRProof (EQUIVALENT transformation)
Used ordering:
Recursive path order with status [RPO].
Quasi-Precedence:
p10 > +2 > [p2, p1, p5]
Status:
+2: [1,2]
p2: multiset
p1: multiset
p5: multiset
p10: multiset
With this ordering the following rules can be removed by the rule removal processor [LPAR04] because they are oriented strictly:
+(p10, p1) → +(p1, p10)
+(p10, +(p1, x)) → +(p1, +(p10, x))
+(p10, p2) → +(p2, p10)
+(p10, +(p2, x)) → +(p2, +(p10, x))
+(p10, p5) → +(p5, p10)
+(p10, +(p5, x)) → +(p5, +(p10, x))
(4) Obligation:
Q restricted rewrite system:
The TRS R consists of the following rules:
+(p2, p1) → +(p1, p2)
+(p2, +(p1, x)) → +(p1, +(p2, x))
+(p5, p1) → +(p1, p5)
+(p5, +(p1, x)) → +(p1, +(p5, x))
+(p5, p2) → +(p2, p5)
+(p5, +(p2, x)) → +(p2, +(p5, x))
Q is empty.
(5) QTRSRRRProof (EQUIVALENT transformation)
Used ordering:
Recursive path order with status [RPO].
Quasi-Precedence:
[+2, p1] > [p2, p5]
Status:
+2: multiset
p2: multiset
p1: multiset
p5: multiset
With this ordering the following rules can be removed by the rule removal processor [LPAR04] because they are oriented strictly:
+(p2, +(p1, x)) → +(p1, +(p2, x))
+(p5, +(p1, x)) → +(p1, +(p5, x))
(6) Obligation:
Q restricted rewrite system:
The TRS R consists of the following rules:
+(p2, p1) → +(p1, p2)
+(p5, p1) → +(p1, p5)
+(p5, p2) → +(p2, p5)
+(p5, +(p2, x)) → +(p2, +(p5, x))
Q is empty.
(7) QTRSRRRProof (EQUIVALENT transformation)
Used ordering:
Recursive path order with status [RPO].
Quasi-Precedence:
[+2, p1] > [p2, p5]
Status:
+2: [2,1]
p2: multiset
p1: multiset
p5: multiset
With this ordering the following rules can be removed by the rule removal processor [LPAR04] because they are oriented strictly:
+(p2, p1) → +(p1, p2)
+(p5, p1) → +(p1, p5)
(8) Obligation:
Q restricted rewrite system:
The TRS R consists of the following rules:
+(p5, p2) → +(p2, p5)
+(p5, +(p2, x)) → +(p2, +(p5, x))
Q is empty.
(9) QTRSRRRProof (EQUIVALENT transformation)
Used ordering:
Recursive path order with status [RPO].
Quasi-Precedence:
p2 > [+2, p5]
Status:
+2: multiset
p5: multiset
p2: multiset
With this ordering the following rules can be removed by the rule removal processor [LPAR04] because they are oriented strictly:
+(p5, +(p2, x)) → +(p2, +(p5, x))
(10) Obligation:
Q restricted rewrite system:
The TRS R consists of the following rules:
+(p5, p2) → +(p2, p5)
Q is empty.
(11) QTRSRRRProof (EQUIVALENT transformation)
Used ordering:
Recursive path order with status [RPO].
Quasi-Precedence:
p2 > [+2, p5]
Status:
+2: [2,1]
p5: multiset
p2: multiset
With this ordering the following rules can be removed by the rule removal processor [LPAR04] because they are oriented strictly:
+(p5, p2) → +(p2, p5)
(12) Obligation:
Q restricted rewrite system:
R is empty.
Q is empty.
(13) RisEmptyProof (EQUIVALENT transformation)
The TRS R is empty. Hence, termination is trivially proven.
(14) TRUE