(0) Obligation:

Q restricted rewrite system:
The TRS R consists of the following rules:

+(p1, p1) → p2
+(p1, +(p2, p2)) → p5
+(p5, p5) → p10
+(+(x, y), z) → +(x, +(y, z))
+(p1, +(p1, x)) → +(p2, x)
+(p1, +(p2, +(p2, x))) → +(p5, x)
+(p2, p1) → +(p1, p2)
+(p2, +(p1, x)) → +(p1, +(p2, x))
+(p2, +(p2, p2)) → +(p1, p5)
+(p2, +(p2, +(p2, x))) → +(p1, +(p5, x))
+(p5, p1) → +(p1, p5)
+(p5, +(p1, x)) → +(p1, +(p5, x))
+(p5, p2) → +(p2, p5)
+(p5, +(p2, x)) → +(p2, +(p5, x))
+(p5, +(p5, x)) → +(p10, x)
+(p10, p1) → +(p1, p10)
+(p10, +(p1, x)) → +(p1, +(p10, x))
+(p10, p2) → +(p2, p10)
+(p10, +(p2, x)) → +(p2, +(p10, x))
+(p10, p5) → +(p5, p10)
+(p10, +(p5, x)) → +(p5, +(p10, x))

Q is empty.

(1) QTRSRRRProof (EQUIVALENT transformation)

Used ordering:
Recursive path order with status [RPO].
Quasi-Precedence:
[+2, p1, p2, p5, p10]

Status:
+2: [1,2]
p1: multiset
p2: multiset
p5: multiset
p10: multiset

With this ordering the following rules can be removed by the rule removal processor [LPAR04] because they are oriented strictly:

+(p1, p1) → p2
+(p1, +(p2, p2)) → p5
+(p5, p5) → p10
+(+(x, y), z) → +(x, +(y, z))
+(p1, +(p1, x)) → +(p2, x)
+(p1, +(p2, +(p2, x))) → +(p5, x)
+(p2, +(p2, p2)) → +(p1, p5)
+(p2, +(p2, +(p2, x))) → +(p1, +(p5, x))
+(p5, +(p5, x)) → +(p10, x)


(2) Obligation:

Q restricted rewrite system:
The TRS R consists of the following rules:

+(p2, p1) → +(p1, p2)
+(p2, +(p1, x)) → +(p1, +(p2, x))
+(p5, p1) → +(p1, p5)
+(p5, +(p1, x)) → +(p1, +(p5, x))
+(p5, p2) → +(p2, p5)
+(p5, +(p2, x)) → +(p2, +(p5, x))
+(p10, p1) → +(p1, p10)
+(p10, +(p1, x)) → +(p1, +(p10, x))
+(p10, p2) → +(p2, p10)
+(p10, +(p2, x)) → +(p2, +(p10, x))
+(p10, p5) → +(p5, p10)
+(p10, +(p5, x)) → +(p5, +(p10, x))

Q is empty.

(3) QTRSRRRProof (EQUIVALENT transformation)

Used ordering:
Recursive path order with status [RPO].
Quasi-Precedence:
p10 > +2 > [p2, p1, p5]

Status:
+2: [1,2]
p2: multiset
p1: multiset
p5: multiset
p10: multiset

With this ordering the following rules can be removed by the rule removal processor [LPAR04] because they are oriented strictly:

+(p10, p1) → +(p1, p10)
+(p10, +(p1, x)) → +(p1, +(p10, x))
+(p10, p2) → +(p2, p10)
+(p10, +(p2, x)) → +(p2, +(p10, x))
+(p10, p5) → +(p5, p10)
+(p10, +(p5, x)) → +(p5, +(p10, x))


(4) Obligation:

Q restricted rewrite system:
The TRS R consists of the following rules:

+(p2, p1) → +(p1, p2)
+(p2, +(p1, x)) → +(p1, +(p2, x))
+(p5, p1) → +(p1, p5)
+(p5, +(p1, x)) → +(p1, +(p5, x))
+(p5, p2) → +(p2, p5)
+(p5, +(p2, x)) → +(p2, +(p5, x))

Q is empty.

(5) QTRSRRRProof (EQUIVALENT transformation)

Used ordering:
Recursive path order with status [RPO].
Quasi-Precedence:
[+2, p1] > [p2, p5]

Status:
+2: multiset
p2: multiset
p1: multiset
p5: multiset

With this ordering the following rules can be removed by the rule removal processor [LPAR04] because they are oriented strictly:

+(p2, +(p1, x)) → +(p1, +(p2, x))
+(p5, +(p1, x)) → +(p1, +(p5, x))


(6) Obligation:

Q restricted rewrite system:
The TRS R consists of the following rules:

+(p2, p1) → +(p1, p2)
+(p5, p1) → +(p1, p5)
+(p5, p2) → +(p2, p5)
+(p5, +(p2, x)) → +(p2, +(p5, x))

Q is empty.

(7) QTRSRRRProof (EQUIVALENT transformation)

Used ordering:
Recursive path order with status [RPO].
Quasi-Precedence:
[+2, p1] > [p2, p5]

Status:
+2: [2,1]
p2: multiset
p1: multiset
p5: multiset

With this ordering the following rules can be removed by the rule removal processor [LPAR04] because they are oriented strictly:

+(p2, p1) → +(p1, p2)
+(p5, p1) → +(p1, p5)


(8) Obligation:

Q restricted rewrite system:
The TRS R consists of the following rules:

+(p5, p2) → +(p2, p5)
+(p5, +(p2, x)) → +(p2, +(p5, x))

Q is empty.

(9) QTRSRRRProof (EQUIVALENT transformation)

Used ordering:
Recursive path order with status [RPO].
Quasi-Precedence:
p2 > [+2, p5]

Status:
+2: multiset
p5: multiset
p2: multiset

With this ordering the following rules can be removed by the rule removal processor [LPAR04] because they are oriented strictly:

+(p5, +(p2, x)) → +(p2, +(p5, x))


(10) Obligation:

Q restricted rewrite system:
The TRS R consists of the following rules:

+(p5, p2) → +(p2, p5)

Q is empty.

(11) QTRSRRRProof (EQUIVALENT transformation)

Used ordering:
Recursive path order with status [RPO].
Quasi-Precedence:
p2 > [+2, p5]

Status:
+2: [2,1]
p5: multiset
p2: multiset

With this ordering the following rules can be removed by the rule removal processor [LPAR04] because they are oriented strictly:

+(p5, p2) → +(p2, p5)


(12) Obligation:

Q restricted rewrite system:
R is empty.
Q is empty.

(13) RisEmptyProof (EQUIVALENT transformation)

The TRS R is empty. Hence, termination is trivially proven.

(14) TRUE