(0) Obligation:
Q restricted rewrite system:
The TRS R consists of the following rules:
f(x, y, w, w, a) → g1(x, x, y, w)
f(x, y, w, a, a) → g1(y, x, x, w)
f(x, y, a, a, w) → g2(x, y, y, w)
f(x, y, a, w, w) → g2(y, y, x, w)
g1(x, x, y, a) → h(x, y)
g1(y, x, x, a) → h(x, y)
g2(x, y, y, a) → h(x, y)
g2(y, y, x, a) → h(x, y)
h(x, x) → x
Q is empty.
(1) QTRSRRRProof (EQUIVALENT transformation)
Used ordering:
Lexicographic path order with status [LPO].
Quasi-Precedence:
f5 > g14 > h2
f5 > g24 > h2
a > g14 > h2
a > g24 > h2
Status:
g14: [4,3,2,1]
a: []
f5: [5,4,3,2,1]
h2: [2,1]
g24: [4,3,2,1]
With this ordering the following rules can be removed by the rule removal processor [LPAR04] because they are oriented strictly:
f(x, y, w, w, a) → g1(x, x, y, w)
f(x, y, w, a, a) → g1(y, x, x, w)
f(x, y, a, a, w) → g2(x, y, y, w)
f(x, y, a, w, w) → g2(y, y, x, w)
g1(x, x, y, a) → h(x, y)
g1(y, x, x, a) → h(x, y)
g2(x, y, y, a) → h(x, y)
g2(y, y, x, a) → h(x, y)
h(x, x) → x
(2) Obligation:
Q restricted rewrite system:
R is empty.
Q is empty.
(3) RisEmptyProof (EQUIVALENT transformation)
The TRS R is empty. Hence, termination is trivially proven.
(4) TRUE