(0) Obligation:

Q restricted rewrite system:
The TRS R consists of the following rules:

1(0(x)) → 0(0(0(1(x))))
0(1(x)) → 1(x)
1(1(x)) → 0(0(0(0(x))))
0(0(x)) → 0(x)

Q is empty.

(1) DependencyPairsProof (EQUIVALENT transformation)

Using Dependency Pairs [AG00,LPAR04] we result in the following initial DP problem.

(2) Obligation:

Q DP problem:
The TRS P consists of the following rules:

11(0(x)) → 01(0(0(1(x))))
11(0(x)) → 01(0(1(x)))
11(0(x)) → 01(1(x))
11(0(x)) → 11(x)
11(1(x)) → 01(0(0(0(x))))
11(1(x)) → 01(0(0(x)))
11(1(x)) → 01(0(x))
11(1(x)) → 01(x)

The TRS R consists of the following rules:

1(0(x)) → 0(0(0(1(x))))
0(1(x)) → 1(x)
1(1(x)) → 0(0(0(0(x))))
0(0(x)) → 0(x)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(3) DependencyGraphProof (EQUIVALENT transformation)

The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 1 SCC with 7 less nodes.

(4) Obligation:

Q DP problem:
The TRS P consists of the following rules:

11(0(x)) → 11(x)

The TRS R consists of the following rules:

1(0(x)) → 0(0(0(1(x))))
0(1(x)) → 1(x)
1(1(x)) → 0(0(0(0(x))))
0(0(x)) → 0(x)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(5) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


11(0(x)) → 11(x)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
11(x1)  =  x1
0(x1)  =  0(x1)
1(x1)  =  1(x1)

Lexicographic Path Order [LPO].
Precedence:
11 > 01

The following usable rules [FROCOS05] were oriented:

1(0(x)) → 0(0(0(1(x))))
0(1(x)) → 1(x)
1(1(x)) → 0(0(0(0(x))))
0(0(x)) → 0(x)

(6) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

1(0(x)) → 0(0(0(1(x))))
0(1(x)) → 1(x)
1(1(x)) → 0(0(0(0(x))))
0(0(x)) → 0(x)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(7) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(8) TRUE