(0) Obligation:

Q restricted rewrite system:
The TRS R consists of the following rules:

a(h, h, h, x) → s(x)
a(l, x, s(y), h) → a(l, x, y, s(h))
a(l, x, s(y), s(z)) → a(l, x, y, a(l, x, s(y), z))
a(l, s(x), h, z) → a(l, x, z, z)
a(s(l), h, h, z) → a(l, z, h, z)
+(x, h) → x
+(h, x) → x
+(s(x), s(y)) → s(s(+(x, y)))
+(+(x, y), z) → +(x, +(y, z))
s(h) → 1
app(nil, k) → k
app(l, nil) → l
app(cons(x, l), k) → cons(x, app(l, k))
sum(cons(x, nil)) → cons(x, nil)
sum(cons(x, cons(y, l))) → sum(cons(a(x, y, h, h), l))

Q is empty.

(1) DependencyPairsProof (EQUIVALENT transformation)

Using Dependency Pairs [AG00,LPAR04] we result in the following initial DP problem.

(2) Obligation:

Q DP problem:
The TRS P consists of the following rules:

A(h, h, h, x) → S(x)
A(l, x, s(y), h) → A(l, x, y, s(h))
A(l, x, s(y), h) → S(h)
A(l, x, s(y), s(z)) → A(l, x, y, a(l, x, s(y), z))
A(l, x, s(y), s(z)) → A(l, x, s(y), z)
A(l, s(x), h, z) → A(l, x, z, z)
A(s(l), h, h, z) → A(l, z, h, z)
+1(s(x), s(y)) → S(s(+(x, y)))
+1(s(x), s(y)) → S(+(x, y))
+1(s(x), s(y)) → +1(x, y)
+1(+(x, y), z) → +1(x, +(y, z))
+1(+(x, y), z) → +1(y, z)
APP(cons(x, l), k) → APP(l, k)
SUM(cons(x, cons(y, l))) → SUM(cons(a(x, y, h, h), l))
SUM(cons(x, cons(y, l))) → A(x, y, h, h)

The TRS R consists of the following rules:

a(h, h, h, x) → s(x)
a(l, x, s(y), h) → a(l, x, y, s(h))
a(l, x, s(y), s(z)) → a(l, x, y, a(l, x, s(y), z))
a(l, s(x), h, z) → a(l, x, z, z)
a(s(l), h, h, z) → a(l, z, h, z)
+(x, h) → x
+(h, x) → x
+(s(x), s(y)) → s(s(+(x, y)))
+(+(x, y), z) → +(x, +(y, z))
s(h) → 1
app(nil, k) → k
app(l, nil) → l
app(cons(x, l), k) → cons(x, app(l, k))
sum(cons(x, nil)) → cons(x, nil)
sum(cons(x, cons(y, l))) → sum(cons(a(x, y, h, h), l))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(3) DependencyGraphProof (EQUIVALENT transformation)

The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 4 SCCs with 5 less nodes.

(4) Complex Obligation (AND)

(5) Obligation:

Q DP problem:
The TRS P consists of the following rules:

APP(cons(x, l), k) → APP(l, k)

The TRS R consists of the following rules:

a(h, h, h, x) → s(x)
a(l, x, s(y), h) → a(l, x, y, s(h))
a(l, x, s(y), s(z)) → a(l, x, y, a(l, x, s(y), z))
a(l, s(x), h, z) → a(l, x, z, z)
a(s(l), h, h, z) → a(l, z, h, z)
+(x, h) → x
+(h, x) → x
+(s(x), s(y)) → s(s(+(x, y)))
+(+(x, y), z) → +(x, +(y, z))
s(h) → 1
app(nil, k) → k
app(l, nil) → l
app(cons(x, l), k) → cons(x, app(l, k))
sum(cons(x, nil)) → cons(x, nil)
sum(cons(x, cons(y, l))) → sum(cons(a(x, y, h, h), l))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(6) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


APP(cons(x, l), k) → APP(l, k)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
APP(x1, x2)  =  APP(x1)
cons(x1, x2)  =  cons(x1, x2)

Recursive path order with status [RPO].
Precedence:
cons2 > APP1

Status:
APP1: multiset
cons2: multiset

The following usable rules [FROCOS05] were oriented: none

(7) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

a(h, h, h, x) → s(x)
a(l, x, s(y), h) → a(l, x, y, s(h))
a(l, x, s(y), s(z)) → a(l, x, y, a(l, x, s(y), z))
a(l, s(x), h, z) → a(l, x, z, z)
a(s(l), h, h, z) → a(l, z, h, z)
+(x, h) → x
+(h, x) → x
+(s(x), s(y)) → s(s(+(x, y)))
+(+(x, y), z) → +(x, +(y, z))
s(h) → 1
app(nil, k) → k
app(l, nil) → l
app(cons(x, l), k) → cons(x, app(l, k))
sum(cons(x, nil)) → cons(x, nil)
sum(cons(x, cons(y, l))) → sum(cons(a(x, y, h, h), l))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(8) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(9) TRUE

(10) Obligation:

Q DP problem:
The TRS P consists of the following rules:

+1(+(x, y), z) → +1(x, +(y, z))
+1(s(x), s(y)) → +1(x, y)
+1(+(x, y), z) → +1(y, z)

The TRS R consists of the following rules:

a(h, h, h, x) → s(x)
a(l, x, s(y), h) → a(l, x, y, s(h))
a(l, x, s(y), s(z)) → a(l, x, y, a(l, x, s(y), z))
a(l, s(x), h, z) → a(l, x, z, z)
a(s(l), h, h, z) → a(l, z, h, z)
+(x, h) → x
+(h, x) → x
+(s(x), s(y)) → s(s(+(x, y)))
+(+(x, y), z) → +(x, +(y, z))
s(h) → 1
app(nil, k) → k
app(l, nil) → l
app(cons(x, l), k) → cons(x, app(l, k))
sum(cons(x, nil)) → cons(x, nil)
sum(cons(x, cons(y, l))) → sum(cons(a(x, y, h, h), l))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(11) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


+1(+(x, y), z) → +1(x, +(y, z))
+1(s(x), s(y)) → +1(x, y)
+1(+(x, y), z) → +1(y, z)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
+1(x1, x2)  =  +1(x1)
+(x1, x2)  =  +(x1, x2)
s(x1)  =  s(x1)
h  =  h
1  =  1

Recursive path order with status [RPO].
Precedence:
+2 > s1 > +^11
h > +^11
1 > +^11

Status:
+^11: multiset
+2: multiset
s1: multiset
h: multiset
1: multiset

The following usable rules [FROCOS05] were oriented: none

(12) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

a(h, h, h, x) → s(x)
a(l, x, s(y), h) → a(l, x, y, s(h))
a(l, x, s(y), s(z)) → a(l, x, y, a(l, x, s(y), z))
a(l, s(x), h, z) → a(l, x, z, z)
a(s(l), h, h, z) → a(l, z, h, z)
+(x, h) → x
+(h, x) → x
+(s(x), s(y)) → s(s(+(x, y)))
+(+(x, y), z) → +(x, +(y, z))
s(h) → 1
app(nil, k) → k
app(l, nil) → l
app(cons(x, l), k) → cons(x, app(l, k))
sum(cons(x, nil)) → cons(x, nil)
sum(cons(x, cons(y, l))) → sum(cons(a(x, y, h, h), l))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(13) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(14) TRUE

(15) Obligation:

Q DP problem:
The TRS P consists of the following rules:

A(l, x, s(y), s(z)) → A(l, x, y, a(l, x, s(y), z))
A(l, x, s(y), h) → A(l, x, y, s(h))
A(l, x, s(y), s(z)) → A(l, x, s(y), z)
A(l, s(x), h, z) → A(l, x, z, z)
A(s(l), h, h, z) → A(l, z, h, z)

The TRS R consists of the following rules:

a(h, h, h, x) → s(x)
a(l, x, s(y), h) → a(l, x, y, s(h))
a(l, x, s(y), s(z)) → a(l, x, y, a(l, x, s(y), z))
a(l, s(x), h, z) → a(l, x, z, z)
a(s(l), h, h, z) → a(l, z, h, z)
+(x, h) → x
+(h, x) → x
+(s(x), s(y)) → s(s(+(x, y)))
+(+(x, y), z) → +(x, +(y, z))
s(h) → 1
app(nil, k) → k
app(l, nil) → l
app(cons(x, l), k) → cons(x, app(l, k))
sum(cons(x, nil)) → cons(x, nil)
sum(cons(x, cons(y, l))) → sum(cons(a(x, y, h, h), l))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(16) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


A(l, x, s(y), s(z)) → A(l, x, y, a(l, x, s(y), z))
A(l, x, s(y), h) → A(l, x, y, s(h))
A(l, x, s(y), s(z)) → A(l, x, s(y), z)
A(l, s(x), h, z) → A(l, x, z, z)
A(s(l), h, h, z) → A(l, z, h, z)
The remaining pairs can at least be oriented weakly.
Used ordering: Recursive path order with status [RPO].
Precedence:
h > A4 > a4 > s1
h > 1 > s1

Status:
A4: [1,2,3,4]
s1: multiset
a4: [1,2,3,4]
h: multiset
1: multiset

The following usable rules [FROCOS05] were oriented:

s(h) → 1
a(h, h, h, x) → s(x)
a(l, x, s(y), s(z)) → a(l, x, y, a(l, x, s(y), z))
a(l, x, s(y), h) → a(l, x, y, s(h))
a(l, s(x), h, z) → a(l, x, z, z)
a(s(l), h, h, z) → a(l, z, h, z)

(17) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

a(h, h, h, x) → s(x)
a(l, x, s(y), h) → a(l, x, y, s(h))
a(l, x, s(y), s(z)) → a(l, x, y, a(l, x, s(y), z))
a(l, s(x), h, z) → a(l, x, z, z)
a(s(l), h, h, z) → a(l, z, h, z)
+(x, h) → x
+(h, x) → x
+(s(x), s(y)) → s(s(+(x, y)))
+(+(x, y), z) → +(x, +(y, z))
s(h) → 1
app(nil, k) → k
app(l, nil) → l
app(cons(x, l), k) → cons(x, app(l, k))
sum(cons(x, nil)) → cons(x, nil)
sum(cons(x, cons(y, l))) → sum(cons(a(x, y, h, h), l))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(18) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(19) TRUE

(20) Obligation:

Q DP problem:
The TRS P consists of the following rules:

SUM(cons(x, cons(y, l))) → SUM(cons(a(x, y, h, h), l))

The TRS R consists of the following rules:

a(h, h, h, x) → s(x)
a(l, x, s(y), h) → a(l, x, y, s(h))
a(l, x, s(y), s(z)) → a(l, x, y, a(l, x, s(y), z))
a(l, s(x), h, z) → a(l, x, z, z)
a(s(l), h, h, z) → a(l, z, h, z)
+(x, h) → x
+(h, x) → x
+(s(x), s(y)) → s(s(+(x, y)))
+(+(x, y), z) → +(x, +(y, z))
s(h) → 1
app(nil, k) → k
app(l, nil) → l
app(cons(x, l), k) → cons(x, app(l, k))
sum(cons(x, nil)) → cons(x, nil)
sum(cons(x, cons(y, l))) → sum(cons(a(x, y, h, h), l))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(21) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


SUM(cons(x, cons(y, l))) → SUM(cons(a(x, y, h, h), l))
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
SUM(x1)  =  SUM(x1)
cons(x1, x2)  =  cons(x2)
a(x1, x2, x3, x4)  =  a
h  =  h
s(x1)  =  x1
1  =  1

Recursive path order with status [RPO].
Precedence:
SUM1 > a > cons1
h > a > cons1
1 > cons1

Status:
SUM1: [1]
cons1: multiset
a: []
h: multiset
1: multiset

The following usable rules [FROCOS05] were oriented: none

(22) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

a(h, h, h, x) → s(x)
a(l, x, s(y), h) → a(l, x, y, s(h))
a(l, x, s(y), s(z)) → a(l, x, y, a(l, x, s(y), z))
a(l, s(x), h, z) → a(l, x, z, z)
a(s(l), h, h, z) → a(l, z, h, z)
+(x, h) → x
+(h, x) → x
+(s(x), s(y)) → s(s(+(x, y)))
+(+(x, y), z) → +(x, +(y, z))
s(h) → 1
app(nil, k) → k
app(l, nil) → l
app(cons(x, l), k) → cons(x, app(l, k))
sum(cons(x, nil)) → cons(x, nil)
sum(cons(x, cons(y, l))) → sum(cons(a(x, y, h, h), l))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(23) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(24) TRUE