(0) Obligation:

Q restricted rewrite system:
The TRS R consists of the following rules:

D(t) → s(h)
D(constant) → h
D(b(x, y)) → b(D(x), D(y))
D(c(x, y)) → b(c(y, D(x)), c(x, D(y)))
D(m(x, y)) → m(D(x), D(y))
D(opp(x)) → opp(D(x))
D(div(x, y)) → m(div(D(x), y), div(c(x, D(y)), pow(y, 2)))
D(ln(x)) → div(D(x), x)
D(pow(x, y)) → b(c(c(y, pow(x, m(y, 1))), D(x)), c(c(pow(x, y), ln(x)), D(y)))
b(h, x) → x
b(x, h) → x
b(s(x), s(y)) → s(s(b(x, y)))
b(b(x, y), z) → b(x, b(y, z))

Q is empty.

(1) DependencyPairsProof (EQUIVALENT transformation)

Using Dependency Pairs [AG00,LPAR04] we result in the following initial DP problem.

(2) Obligation:

Q DP problem:
The TRS P consists of the following rules:

D1(b(x, y)) → B(D(x), D(y))
D1(b(x, y)) → D1(x)
D1(b(x, y)) → D1(y)
D1(c(x, y)) → B(c(y, D(x)), c(x, D(y)))
D1(c(x, y)) → D1(x)
D1(c(x, y)) → D1(y)
D1(m(x, y)) → D1(x)
D1(m(x, y)) → D1(y)
D1(opp(x)) → D1(x)
D1(div(x, y)) → D1(x)
D1(div(x, y)) → D1(y)
D1(ln(x)) → D1(x)
D1(pow(x, y)) → B(c(c(y, pow(x, m(y, 1))), D(x)), c(c(pow(x, y), ln(x)), D(y)))
D1(pow(x, y)) → D1(x)
D1(pow(x, y)) → D1(y)
B(s(x), s(y)) → B(x, y)
B(b(x, y), z) → B(x, b(y, z))
B(b(x, y), z) → B(y, z)

The TRS R consists of the following rules:

D(t) → s(h)
D(constant) → h
D(b(x, y)) → b(D(x), D(y))
D(c(x, y)) → b(c(y, D(x)), c(x, D(y)))
D(m(x, y)) → m(D(x), D(y))
D(opp(x)) → opp(D(x))
D(div(x, y)) → m(div(D(x), y), div(c(x, D(y)), pow(y, 2)))
D(ln(x)) → div(D(x), x)
D(pow(x, y)) → b(c(c(y, pow(x, m(y, 1))), D(x)), c(c(pow(x, y), ln(x)), D(y)))
b(h, x) → x
b(x, h) → x
b(s(x), s(y)) → s(s(b(x, y)))
b(b(x, y), z) → b(x, b(y, z))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(3) DependencyGraphProof (EQUIVALENT transformation)

The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 2 SCCs with 3 less nodes.

(4) Complex Obligation (AND)

(5) Obligation:

Q DP problem:
The TRS P consists of the following rules:

B(b(x, y), z) → B(x, b(y, z))
B(s(x), s(y)) → B(x, y)
B(b(x, y), z) → B(y, z)

The TRS R consists of the following rules:

D(t) → s(h)
D(constant) → h
D(b(x, y)) → b(D(x), D(y))
D(c(x, y)) → b(c(y, D(x)), c(x, D(y)))
D(m(x, y)) → m(D(x), D(y))
D(opp(x)) → opp(D(x))
D(div(x, y)) → m(div(D(x), y), div(c(x, D(y)), pow(y, 2)))
D(ln(x)) → div(D(x), x)
D(pow(x, y)) → b(c(c(y, pow(x, m(y, 1))), D(x)), c(c(pow(x, y), ln(x)), D(y)))
b(h, x) → x
b(x, h) → x
b(s(x), s(y)) → s(s(b(x, y)))
b(b(x, y), z) → b(x, b(y, z))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(6) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


B(b(x, y), z) → B(x, b(y, z))
B(s(x), s(y)) → B(x, y)
B(b(x, y), z) → B(y, z)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
B(x1, x2)  =  B(x1)
b(x1, x2)  =  b(x1, x2)
s(x1)  =  s(x1)
D(x1)  =  D(x1)
t  =  t
h  =  h
constant  =  constant
c(x1, x2)  =  c
m(x1, x2)  =  m
opp(x1)  =  x1
div(x1, x2)  =  div
pow(x1, x2)  =  pow
2  =  2
ln(x1)  =  ln
1  =  1

Recursive path order with status [RPO].
Quasi-Precedence:
[D1, m] > b2 > B1 > [s1, t, h, c, div, pow, ln]
constant > [s1, t, h, c, div, pow, ln]
2 > [s1, t, h, c, div, pow, ln]
1 > [s1, t, h, c, div, pow, ln]

Status:
B1: multiset
b2: [1,2]
s1: multiset
D1: [1]
t: multiset
h: multiset
constant: multiset
c: multiset
m: []
div: []
pow: multiset
2: multiset
ln: multiset
1: multiset


The following usable rules [FROCOS05] were oriented:

D(t) → s(h)
D(constant) → h
D(b(x, y)) → b(D(x), D(y))
D(c(x, y)) → b(c(y, D(x)), c(x, D(y)))
D(m(x, y)) → m(D(x), D(y))
D(opp(x)) → opp(D(x))
D(div(x, y)) → m(div(D(x), y), div(c(x, D(y)), pow(y, 2)))
D(ln(x)) → div(D(x), x)
D(pow(x, y)) → b(c(c(y, pow(x, m(y, 1))), D(x)), c(c(pow(x, y), ln(x)), D(y)))
b(h, x) → x
b(x, h) → x
b(s(x), s(y)) → s(s(b(x, y)))
b(b(x, y), z) → b(x, b(y, z))

(7) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

D(t) → s(h)
D(constant) → h
D(b(x, y)) → b(D(x), D(y))
D(c(x, y)) → b(c(y, D(x)), c(x, D(y)))
D(m(x, y)) → m(D(x), D(y))
D(opp(x)) → opp(D(x))
D(div(x, y)) → m(div(D(x), y), div(c(x, D(y)), pow(y, 2)))
D(ln(x)) → div(D(x), x)
D(pow(x, y)) → b(c(c(y, pow(x, m(y, 1))), D(x)), c(c(pow(x, y), ln(x)), D(y)))
b(h, x) → x
b(x, h) → x
b(s(x), s(y)) → s(s(b(x, y)))
b(b(x, y), z) → b(x, b(y, z))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(8) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(9) TRUE

(10) Obligation:

Q DP problem:
The TRS P consists of the following rules:

D1(b(x, y)) → D1(y)
D1(b(x, y)) → D1(x)
D1(c(x, y)) → D1(x)
D1(c(x, y)) → D1(y)
D1(m(x, y)) → D1(x)
D1(m(x, y)) → D1(y)
D1(opp(x)) → D1(x)
D1(div(x, y)) → D1(x)
D1(div(x, y)) → D1(y)
D1(ln(x)) → D1(x)
D1(pow(x, y)) → D1(x)
D1(pow(x, y)) → D1(y)

The TRS R consists of the following rules:

D(t) → s(h)
D(constant) → h
D(b(x, y)) → b(D(x), D(y))
D(c(x, y)) → b(c(y, D(x)), c(x, D(y)))
D(m(x, y)) → m(D(x), D(y))
D(opp(x)) → opp(D(x))
D(div(x, y)) → m(div(D(x), y), div(c(x, D(y)), pow(y, 2)))
D(ln(x)) → div(D(x), x)
D(pow(x, y)) → b(c(c(y, pow(x, m(y, 1))), D(x)), c(c(pow(x, y), ln(x)), D(y)))
b(h, x) → x
b(x, h) → x
b(s(x), s(y)) → s(s(b(x, y)))
b(b(x, y), z) → b(x, b(y, z))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(11) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


D1(b(x, y)) → D1(y)
D1(b(x, y)) → D1(x)
D1(c(x, y)) → D1(x)
D1(c(x, y)) → D1(y)
D1(m(x, y)) → D1(x)
D1(m(x, y)) → D1(y)
D1(div(x, y)) → D1(x)
D1(div(x, y)) → D1(y)
D1(ln(x)) → D1(x)
D1(pow(x, y)) → D1(x)
D1(pow(x, y)) → D1(y)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
D1(x1)  =  x1
b(x1, x2)  =  b(x1, x2)
c(x1, x2)  =  c(x1, x2)
m(x1, x2)  =  m(x1, x2)
opp(x1)  =  x1
div(x1, x2)  =  div(x1, x2)
ln(x1)  =  ln(x1)
pow(x1, x2)  =  pow(x1, x2)
D(x1)  =  D(x1)
t  =  t
s(x1)  =  x1
h  =  h
constant  =  constant
2  =  2
1  =  1

Recursive path order with status [RPO].
Quasi-Precedence:
[D1, 1] > b2
[D1, 1] > c2
[D1, 1] > ln1 > [m2, div2, pow2]
[D1, 1] > h
[D1, 1] > 2
t > h
constant > h

Status:
b2: [1,2]
c2: multiset
m2: multiset
div2: multiset
ln1: multiset
pow2: multiset
D1: [1]
t: multiset
h: multiset
constant: multiset
2: multiset
1: multiset


The following usable rules [FROCOS05] were oriented:

D(t) → s(h)
D(constant) → h
D(b(x, y)) → b(D(x), D(y))
D(c(x, y)) → b(c(y, D(x)), c(x, D(y)))
D(m(x, y)) → m(D(x), D(y))
D(opp(x)) → opp(D(x))
D(div(x, y)) → m(div(D(x), y), div(c(x, D(y)), pow(y, 2)))
D(ln(x)) → div(D(x), x)
D(pow(x, y)) → b(c(c(y, pow(x, m(y, 1))), D(x)), c(c(pow(x, y), ln(x)), D(y)))
b(h, x) → x
b(x, h) → x
b(s(x), s(y)) → s(s(b(x, y)))
b(b(x, y), z) → b(x, b(y, z))

(12) Obligation:

Q DP problem:
The TRS P consists of the following rules:

D1(opp(x)) → D1(x)

The TRS R consists of the following rules:

D(t) → s(h)
D(constant) → h
D(b(x, y)) → b(D(x), D(y))
D(c(x, y)) → b(c(y, D(x)), c(x, D(y)))
D(m(x, y)) → m(D(x), D(y))
D(opp(x)) → opp(D(x))
D(div(x, y)) → m(div(D(x), y), div(c(x, D(y)), pow(y, 2)))
D(ln(x)) → div(D(x), x)
D(pow(x, y)) → b(c(c(y, pow(x, m(y, 1))), D(x)), c(c(pow(x, y), ln(x)), D(y)))
b(h, x) → x
b(x, h) → x
b(s(x), s(y)) → s(s(b(x, y)))
b(b(x, y), z) → b(x, b(y, z))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(13) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


D1(opp(x)) → D1(x)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
D1(x1)  =  D1(x1)
opp(x1)  =  opp(x1)
D(x1)  =  D(x1)
t  =  t
s(x1)  =  s
h  =  h
constant  =  constant
b(x1, x2)  =  b(x1, x2)
c(x1, x2)  =  c
m(x1, x2)  =  m(x2)
div(x1, x2)  =  div
pow(x1, x2)  =  pow(x1)
2  =  2
ln(x1)  =  ln
1  =  1

Recursive path order with status [RPO].
Quasi-Precedence:
D^11 > [opp1, c, pow1]
[D1, h, constant, m1, 1] > b2 > s > [opp1, c, pow1]
[D1, h, constant, m1, 1] > [div, 2, ln] > [opp1, c, pow1]
t > s > [opp1, c, pow1]

Status:
D^11: multiset
opp1: multiset
D1: [1]
t: multiset
s: multiset
h: multiset
constant: multiset
b2: [1,2]
c: multiset
m1: [1]
div: []
pow1: [1]
2: multiset
ln: []
1: multiset


The following usable rules [FROCOS05] were oriented:

D(t) → s(h)
D(constant) → h
D(b(x, y)) → b(D(x), D(y))
D(c(x, y)) → b(c(y, D(x)), c(x, D(y)))
D(m(x, y)) → m(D(x), D(y))
D(opp(x)) → opp(D(x))
D(div(x, y)) → m(div(D(x), y), div(c(x, D(y)), pow(y, 2)))
D(ln(x)) → div(D(x), x)
D(pow(x, y)) → b(c(c(y, pow(x, m(y, 1))), D(x)), c(c(pow(x, y), ln(x)), D(y)))
b(h, x) → x
b(x, h) → x
b(s(x), s(y)) → s(s(b(x, y)))
b(b(x, y), z) → b(x, b(y, z))

(14) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

D(t) → s(h)
D(constant) → h
D(b(x, y)) → b(D(x), D(y))
D(c(x, y)) → b(c(y, D(x)), c(x, D(y)))
D(m(x, y)) → m(D(x), D(y))
D(opp(x)) → opp(D(x))
D(div(x, y)) → m(div(D(x), y), div(c(x, D(y)), pow(y, 2)))
D(ln(x)) → div(D(x), x)
D(pow(x, y)) → b(c(c(y, pow(x, m(y, 1))), D(x)), c(c(pow(x, y), ln(x)), D(y)))
b(h, x) → x
b(x, h) → x
b(s(x), s(y)) → s(s(b(x, y)))
b(b(x, y), z) → b(x, b(y, z))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(15) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(16) TRUE