(0) Obligation:

Q restricted rewrite system:
The TRS R consists of the following rules:

D(t) → s(h)
D(constant) → h
D(b(x, y)) → b(D(x), D(y))
D(c(x, y)) → b(c(y, D(x)), c(x, D(y)))
D(m(x, y)) → m(D(x), D(y))
D(opp(x)) → opp(D(x))
D(div(x, y)) → m(div(D(x), y), div(c(x, D(y)), pow(y, 2)))
D(ln(x)) → div(D(x), x)
D(pow(x, y)) → b(c(c(y, pow(x, m(y, 1))), D(x)), c(c(pow(x, y), ln(x)), D(y)))
b(h, x) → x
b(x, h) → x
b(s(x), s(y)) → s(s(b(x, y)))
b(b(x, y), z) → b(x, b(y, z))

Q is empty.

(1) DependencyPairsProof (EQUIVALENT transformation)

Using Dependency Pairs [AG00,LPAR04] we result in the following initial DP problem.

(2) Obligation:

Q DP problem:
The TRS P consists of the following rules:

D1(b(x, y)) → B(D(x), D(y))
D1(b(x, y)) → D1(x)
D1(b(x, y)) → D1(y)
D1(c(x, y)) → B(c(y, D(x)), c(x, D(y)))
D1(c(x, y)) → D1(x)
D1(c(x, y)) → D1(y)
D1(m(x, y)) → D1(x)
D1(m(x, y)) → D1(y)
D1(opp(x)) → D1(x)
D1(div(x, y)) → D1(x)
D1(div(x, y)) → D1(y)
D1(ln(x)) → D1(x)
D1(pow(x, y)) → B(c(c(y, pow(x, m(y, 1))), D(x)), c(c(pow(x, y), ln(x)), D(y)))
D1(pow(x, y)) → D1(x)
D1(pow(x, y)) → D1(y)
B(s(x), s(y)) → B(x, y)
B(b(x, y), z) → B(x, b(y, z))
B(b(x, y), z) → B(y, z)

The TRS R consists of the following rules:

D(t) → s(h)
D(constant) → h
D(b(x, y)) → b(D(x), D(y))
D(c(x, y)) → b(c(y, D(x)), c(x, D(y)))
D(m(x, y)) → m(D(x), D(y))
D(opp(x)) → opp(D(x))
D(div(x, y)) → m(div(D(x), y), div(c(x, D(y)), pow(y, 2)))
D(ln(x)) → div(D(x), x)
D(pow(x, y)) → b(c(c(y, pow(x, m(y, 1))), D(x)), c(c(pow(x, y), ln(x)), D(y)))
b(h, x) → x
b(x, h) → x
b(s(x), s(y)) → s(s(b(x, y)))
b(b(x, y), z) → b(x, b(y, z))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(3) DependencyGraphProof (EQUIVALENT transformation)

The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 2 SCCs with 3 less nodes.

(4) Complex Obligation (AND)

(5) Obligation:

Q DP problem:
The TRS P consists of the following rules:

B(b(x, y), z) → B(x, b(y, z))
B(s(x), s(y)) → B(x, y)
B(b(x, y), z) → B(y, z)

The TRS R consists of the following rules:

D(t) → s(h)
D(constant) → h
D(b(x, y)) → b(D(x), D(y))
D(c(x, y)) → b(c(y, D(x)), c(x, D(y)))
D(m(x, y)) → m(D(x), D(y))
D(opp(x)) → opp(D(x))
D(div(x, y)) → m(div(D(x), y), div(c(x, D(y)), pow(y, 2)))
D(ln(x)) → div(D(x), x)
D(pow(x, y)) → b(c(c(y, pow(x, m(y, 1))), D(x)), c(c(pow(x, y), ln(x)), D(y)))
b(h, x) → x
b(x, h) → x
b(s(x), s(y)) → s(s(b(x, y)))
b(b(x, y), z) → b(x, b(y, z))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(6) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


B(b(x, y), z) → B(x, b(y, z))
B(s(x), s(y)) → B(x, y)
B(b(x, y), z) → B(y, z)
The remaining pairs can at least be oriented weakly.
Used ordering: Recursive path order with status [RPO].
Quasi-Precedence:
[B2, b2] > s1

Status:
b2: [1,2]
B2: [1,2]
s1: multiset
h: multiset


The following usable rules [FROCOS05] were oriented:

b(s(x), s(y)) → s(s(b(x, y)))
b(b(x, y), z) → b(x, b(y, z))
b(h, x) → x
b(x, h) → x

(7) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

D(t) → s(h)
D(constant) → h
D(b(x, y)) → b(D(x), D(y))
D(c(x, y)) → b(c(y, D(x)), c(x, D(y)))
D(m(x, y)) → m(D(x), D(y))
D(opp(x)) → opp(D(x))
D(div(x, y)) → m(div(D(x), y), div(c(x, D(y)), pow(y, 2)))
D(ln(x)) → div(D(x), x)
D(pow(x, y)) → b(c(c(y, pow(x, m(y, 1))), D(x)), c(c(pow(x, y), ln(x)), D(y)))
b(h, x) → x
b(x, h) → x
b(s(x), s(y)) → s(s(b(x, y)))
b(b(x, y), z) → b(x, b(y, z))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(8) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(9) TRUE

(10) Obligation:

Q DP problem:
The TRS P consists of the following rules:

D1(b(x, y)) → D1(y)
D1(b(x, y)) → D1(x)
D1(c(x, y)) → D1(x)
D1(c(x, y)) → D1(y)
D1(m(x, y)) → D1(x)
D1(m(x, y)) → D1(y)
D1(opp(x)) → D1(x)
D1(div(x, y)) → D1(x)
D1(div(x, y)) → D1(y)
D1(ln(x)) → D1(x)
D1(pow(x, y)) → D1(x)
D1(pow(x, y)) → D1(y)

The TRS R consists of the following rules:

D(t) → s(h)
D(constant) → h
D(b(x, y)) → b(D(x), D(y))
D(c(x, y)) → b(c(y, D(x)), c(x, D(y)))
D(m(x, y)) → m(D(x), D(y))
D(opp(x)) → opp(D(x))
D(div(x, y)) → m(div(D(x), y), div(c(x, D(y)), pow(y, 2)))
D(ln(x)) → div(D(x), x)
D(pow(x, y)) → b(c(c(y, pow(x, m(y, 1))), D(x)), c(c(pow(x, y), ln(x)), D(y)))
b(h, x) → x
b(x, h) → x
b(s(x), s(y)) → s(s(b(x, y)))
b(b(x, y), z) → b(x, b(y, z))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(11) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


D1(b(x, y)) → D1(y)
D1(b(x, y)) → D1(x)
D1(c(x, y)) → D1(x)
D1(c(x, y)) → D1(y)
D1(m(x, y)) → D1(x)
D1(m(x, y)) → D1(y)
D1(opp(x)) → D1(x)
D1(div(x, y)) → D1(x)
D1(div(x, y)) → D1(y)
D1(pow(x, y)) → D1(x)
D1(pow(x, y)) → D1(y)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
D1(x1)  =  D1(x1)
b(x1, x2)  =  b(x1, x2)
c(x1, x2)  =  c(x1, x2)
m(x1, x2)  =  m(x1, x2)
opp(x1)  =  opp(x1)
div(x1, x2)  =  div(x1, x2)
ln(x1)  =  x1
pow(x1, x2)  =  pow(x1, x2)

Recursive path order with status [RPO].
Quasi-Precedence:
[D^11, pow2]

Status:
opp1: multiset
m2: multiset
c2: multiset
b2: multiset
div2: multiset
pow2: multiset
D^11: [1]


The following usable rules [FROCOS05] were oriented: none

(12) Obligation:

Q DP problem:
The TRS P consists of the following rules:

D1(ln(x)) → D1(x)

The TRS R consists of the following rules:

D(t) → s(h)
D(constant) → h
D(b(x, y)) → b(D(x), D(y))
D(c(x, y)) → b(c(y, D(x)), c(x, D(y)))
D(m(x, y)) → m(D(x), D(y))
D(opp(x)) → opp(D(x))
D(div(x, y)) → m(div(D(x), y), div(c(x, D(y)), pow(y, 2)))
D(ln(x)) → div(D(x), x)
D(pow(x, y)) → b(c(c(y, pow(x, m(y, 1))), D(x)), c(c(pow(x, y), ln(x)), D(y)))
b(h, x) → x
b(x, h) → x
b(s(x), s(y)) → s(s(b(x, y)))
b(b(x, y), z) → b(x, b(y, z))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(13) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


D1(ln(x)) → D1(x)
The remaining pairs can at least be oriented weakly.
Used ordering: Recursive path order with status [RPO].
Quasi-Precedence:
ln1 > D^11

Status:
ln1: multiset
D^11: multiset


The following usable rules [FROCOS05] were oriented: none

(14) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

D(t) → s(h)
D(constant) → h
D(b(x, y)) → b(D(x), D(y))
D(c(x, y)) → b(c(y, D(x)), c(x, D(y)))
D(m(x, y)) → m(D(x), D(y))
D(opp(x)) → opp(D(x))
D(div(x, y)) → m(div(D(x), y), div(c(x, D(y)), pow(y, 2)))
D(ln(x)) → div(D(x), x)
D(pow(x, y)) → b(c(c(y, pow(x, m(y, 1))), D(x)), c(c(pow(x, y), ln(x)), D(y)))
b(h, x) → x
b(x, h) → x
b(s(x), s(y)) → s(s(b(x, y)))
b(b(x, y), z) → b(x, b(y, z))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(15) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(16) TRUE