(0) Obligation:
Q restricted rewrite system:
The TRS R consists of the following rules:
plus(x, y) → ifPlus(isZero(x), x, inc(y))
ifPlus(true, x, y) → p(y)
ifPlus(false, x, y) → plus(p(x), y)
times(x, y) → timesIter(0, x, y, 0)
timesIter(i, x, y, z) → ifTimes(ge(i, x), i, x, y, z)
ifTimes(true, i, x, y, z) → z
ifTimes(false, i, x, y, z) → timesIter(inc(i), x, y, plus(z, y))
isZero(0) → true
isZero(s(0)) → false
isZero(s(s(x))) → isZero(s(x))
inc(0) → s(0)
inc(s(x)) → s(inc(x))
inc(x) → s(x)
p(0) → 0
p(s(x)) → x
p(s(s(x))) → s(p(s(x)))
ge(x, 0) → true
ge(0, s(y)) → false
ge(s(x), s(y)) → ge(x, y)
f0(0, y, x) → f1(x, y, x)
f1(x, y, z) → f2(x, y, z)
f2(x, 1, z) → f0(x, z, z)
f0(x, y, z) → d
f1(x, y, z) → c
Q is empty.
(1) AAECC Innermost (EQUIVALENT transformation)
We have applied [NOC,AAECCNOC] to switch to innermost. The TRS R 1 is
ifTimes(true, i, x, y, z) → z
ifTimes(false, i, x, y, z) → timesIter(inc(i), x, y, plus(z, y))
isZero(0) → true
isZero(s(0)) → false
isZero(s(s(x))) → isZero(s(x))
inc(0) → s(0)
inc(s(x)) → s(inc(x))
inc(x) → s(x)
p(0) → 0
p(s(x)) → x
p(s(s(x))) → s(p(s(x)))
ge(x, 0) → true
ge(0, s(y)) → false
ge(s(x), s(y)) → ge(x, y)
plus(x, y) → ifPlus(isZero(x), x, inc(y))
ifPlus(true, x, y) → p(y)
ifPlus(false, x, y) → plus(p(x), y)
times(x, y) → timesIter(0, x, y, 0)
timesIter(i, x, y, z) → ifTimes(ge(i, x), i, x, y, z)
The TRS R 2 is
f0(0, y, x) → f1(x, y, x)
f1(x, y, z) → f2(x, y, z)
f2(x, 1, z) → f0(x, z, z)
f0(x, y, z) → d
f1(x, y, z) → c
The signature Sigma is {
f0,
f1,
f2,
d,
c}
(2) Obligation:
Q restricted rewrite system:
The TRS R consists of the following rules:
plus(x, y) → ifPlus(isZero(x), x, inc(y))
ifPlus(true, x, y) → p(y)
ifPlus(false, x, y) → plus(p(x), y)
times(x, y) → timesIter(0, x, y, 0)
timesIter(i, x, y, z) → ifTimes(ge(i, x), i, x, y, z)
ifTimes(true, i, x, y, z) → z
ifTimes(false, i, x, y, z) → timesIter(inc(i), x, y, plus(z, y))
isZero(0) → true
isZero(s(0)) → false
isZero(s(s(x))) → isZero(s(x))
inc(0) → s(0)
inc(s(x)) → s(inc(x))
inc(x) → s(x)
p(0) → 0
p(s(x)) → x
p(s(s(x))) → s(p(s(x)))
ge(x, 0) → true
ge(0, s(y)) → false
ge(s(x), s(y)) → ge(x, y)
f0(0, y, x) → f1(x, y, x)
f1(x, y, z) → f2(x, y, z)
f2(x, 1, z) → f0(x, z, z)
f0(x, y, z) → d
f1(x, y, z) → c
The set Q consists of the following terms:
plus(x0, x1)
ifPlus(true, x0, x1)
ifPlus(false, x0, x1)
times(x0, x1)
timesIter(x0, x1, x2, x3)
ifTimes(true, x0, x1, x2, x3)
ifTimes(false, x0, x1, x2, x3)
isZero(0)
isZero(s(0))
isZero(s(s(x0)))
inc(x0)
p(0)
p(s(x0))
ge(x0, 0)
ge(0, s(x0))
ge(s(x0), s(x1))
f1(x0, x1, x2)
f2(x0, 1, x1)
f0(x0, x1, x2)
(3) DependencyPairsProof (EQUIVALENT transformation)
Using Dependency Pairs [AG00,LPAR04] we result in the following initial DP problem.
(4) Obligation:
Q DP problem:
The TRS P consists of the following rules:
PLUS(x, y) → IFPLUS(isZero(x), x, inc(y))
PLUS(x, y) → ISZERO(x)
PLUS(x, y) → INC(y)
IFPLUS(true, x, y) → P(y)
IFPLUS(false, x, y) → PLUS(p(x), y)
IFPLUS(false, x, y) → P(x)
TIMES(x, y) → TIMESITER(0, x, y, 0)
TIMESITER(i, x, y, z) → IFTIMES(ge(i, x), i, x, y, z)
TIMESITER(i, x, y, z) → GE(i, x)
IFTIMES(false, i, x, y, z) → TIMESITER(inc(i), x, y, plus(z, y))
IFTIMES(false, i, x, y, z) → INC(i)
IFTIMES(false, i, x, y, z) → PLUS(z, y)
ISZERO(s(s(x))) → ISZERO(s(x))
INC(s(x)) → INC(x)
P(s(s(x))) → P(s(x))
GE(s(x), s(y)) → GE(x, y)
F0(0, y, x) → F1(x, y, x)
F1(x, y, z) → F2(x, y, z)
F2(x, 1, z) → F0(x, z, z)
The TRS R consists of the following rules:
plus(x, y) → ifPlus(isZero(x), x, inc(y))
ifPlus(true, x, y) → p(y)
ifPlus(false, x, y) → plus(p(x), y)
times(x, y) → timesIter(0, x, y, 0)
timesIter(i, x, y, z) → ifTimes(ge(i, x), i, x, y, z)
ifTimes(true, i, x, y, z) → z
ifTimes(false, i, x, y, z) → timesIter(inc(i), x, y, plus(z, y))
isZero(0) → true
isZero(s(0)) → false
isZero(s(s(x))) → isZero(s(x))
inc(0) → s(0)
inc(s(x)) → s(inc(x))
inc(x) → s(x)
p(0) → 0
p(s(x)) → x
p(s(s(x))) → s(p(s(x)))
ge(x, 0) → true
ge(0, s(y)) → false
ge(s(x), s(y)) → ge(x, y)
f0(0, y, x) → f1(x, y, x)
f1(x, y, z) → f2(x, y, z)
f2(x, 1, z) → f0(x, z, z)
f0(x, y, z) → d
f1(x, y, z) → c
The set Q consists of the following terms:
plus(x0, x1)
ifPlus(true, x0, x1)
ifPlus(false, x0, x1)
times(x0, x1)
timesIter(x0, x1, x2, x3)
ifTimes(true, x0, x1, x2, x3)
ifTimes(false, x0, x1, x2, x3)
isZero(0)
isZero(s(0))
isZero(s(s(x0)))
inc(x0)
p(0)
p(s(x0))
ge(x0, 0)
ge(0, s(x0))
ge(s(x0), s(x1))
f1(x0, x1, x2)
f2(x0, 1, x1)
f0(x0, x1, x2)
We have to consider all minimal (P,Q,R)-chains.
(5) DependencyGraphProof (EQUIVALENT transformation)
The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 7 SCCs with 8 less nodes.
(6) Complex Obligation (AND)
(7) Obligation:
Q DP problem:
The TRS P consists of the following rules:
F1(x, y, z) → F2(x, y, z)
F2(x, 1, z) → F0(x, z, z)
F0(0, y, x) → F1(x, y, x)
The TRS R consists of the following rules:
plus(x, y) → ifPlus(isZero(x), x, inc(y))
ifPlus(true, x, y) → p(y)
ifPlus(false, x, y) → plus(p(x), y)
times(x, y) → timesIter(0, x, y, 0)
timesIter(i, x, y, z) → ifTimes(ge(i, x), i, x, y, z)
ifTimes(true, i, x, y, z) → z
ifTimes(false, i, x, y, z) → timesIter(inc(i), x, y, plus(z, y))
isZero(0) → true
isZero(s(0)) → false
isZero(s(s(x))) → isZero(s(x))
inc(0) → s(0)
inc(s(x)) → s(inc(x))
inc(x) → s(x)
p(0) → 0
p(s(x)) → x
p(s(s(x))) → s(p(s(x)))
ge(x, 0) → true
ge(0, s(y)) → false
ge(s(x), s(y)) → ge(x, y)
f0(0, y, x) → f1(x, y, x)
f1(x, y, z) → f2(x, y, z)
f2(x, 1, z) → f0(x, z, z)
f0(x, y, z) → d
f1(x, y, z) → c
The set Q consists of the following terms:
plus(x0, x1)
ifPlus(true, x0, x1)
ifPlus(false, x0, x1)
times(x0, x1)
timesIter(x0, x1, x2, x3)
ifTimes(true, x0, x1, x2, x3)
ifTimes(false, x0, x1, x2, x3)
isZero(0)
isZero(s(0))
isZero(s(s(x0)))
inc(x0)
p(0)
p(s(x0))
ge(x0, 0)
ge(0, s(x0))
ge(s(x0), s(x1))
f1(x0, x1, x2)
f2(x0, 1, x1)
f0(x0, x1, x2)
We have to consider all minimal (P,Q,R)-chains.
(8) Obligation:
Q DP problem:
The TRS P consists of the following rules:
GE(s(x), s(y)) → GE(x, y)
The TRS R consists of the following rules:
plus(x, y) → ifPlus(isZero(x), x, inc(y))
ifPlus(true, x, y) → p(y)
ifPlus(false, x, y) → plus(p(x), y)
times(x, y) → timesIter(0, x, y, 0)
timesIter(i, x, y, z) → ifTimes(ge(i, x), i, x, y, z)
ifTimes(true, i, x, y, z) → z
ifTimes(false, i, x, y, z) → timesIter(inc(i), x, y, plus(z, y))
isZero(0) → true
isZero(s(0)) → false
isZero(s(s(x))) → isZero(s(x))
inc(0) → s(0)
inc(s(x)) → s(inc(x))
inc(x) → s(x)
p(0) → 0
p(s(x)) → x
p(s(s(x))) → s(p(s(x)))
ge(x, 0) → true
ge(0, s(y)) → false
ge(s(x), s(y)) → ge(x, y)
f0(0, y, x) → f1(x, y, x)
f1(x, y, z) → f2(x, y, z)
f2(x, 1, z) → f0(x, z, z)
f0(x, y, z) → d
f1(x, y, z) → c
The set Q consists of the following terms:
plus(x0, x1)
ifPlus(true, x0, x1)
ifPlus(false, x0, x1)
times(x0, x1)
timesIter(x0, x1, x2, x3)
ifTimes(true, x0, x1, x2, x3)
ifTimes(false, x0, x1, x2, x3)
isZero(0)
isZero(s(0))
isZero(s(s(x0)))
inc(x0)
p(0)
p(s(x0))
ge(x0, 0)
ge(0, s(x0))
ge(s(x0), s(x1))
f1(x0, x1, x2)
f2(x0, 1, x1)
f0(x0, x1, x2)
We have to consider all minimal (P,Q,R)-chains.
(9) Obligation:
Q DP problem:
The TRS P consists of the following rules:
P(s(s(x))) → P(s(x))
The TRS R consists of the following rules:
plus(x, y) → ifPlus(isZero(x), x, inc(y))
ifPlus(true, x, y) → p(y)
ifPlus(false, x, y) → plus(p(x), y)
times(x, y) → timesIter(0, x, y, 0)
timesIter(i, x, y, z) → ifTimes(ge(i, x), i, x, y, z)
ifTimes(true, i, x, y, z) → z
ifTimes(false, i, x, y, z) → timesIter(inc(i), x, y, plus(z, y))
isZero(0) → true
isZero(s(0)) → false
isZero(s(s(x))) → isZero(s(x))
inc(0) → s(0)
inc(s(x)) → s(inc(x))
inc(x) → s(x)
p(0) → 0
p(s(x)) → x
p(s(s(x))) → s(p(s(x)))
ge(x, 0) → true
ge(0, s(y)) → false
ge(s(x), s(y)) → ge(x, y)
f0(0, y, x) → f1(x, y, x)
f1(x, y, z) → f2(x, y, z)
f2(x, 1, z) → f0(x, z, z)
f0(x, y, z) → d
f1(x, y, z) → c
The set Q consists of the following terms:
plus(x0, x1)
ifPlus(true, x0, x1)
ifPlus(false, x0, x1)
times(x0, x1)
timesIter(x0, x1, x2, x3)
ifTimes(true, x0, x1, x2, x3)
ifTimes(false, x0, x1, x2, x3)
isZero(0)
isZero(s(0))
isZero(s(s(x0)))
inc(x0)
p(0)
p(s(x0))
ge(x0, 0)
ge(0, s(x0))
ge(s(x0), s(x1))
f1(x0, x1, x2)
f2(x0, 1, x1)
f0(x0, x1, x2)
We have to consider all minimal (P,Q,R)-chains.
(10) Obligation:
Q DP problem:
The TRS P consists of the following rules:
INC(s(x)) → INC(x)
The TRS R consists of the following rules:
plus(x, y) → ifPlus(isZero(x), x, inc(y))
ifPlus(true, x, y) → p(y)
ifPlus(false, x, y) → plus(p(x), y)
times(x, y) → timesIter(0, x, y, 0)
timesIter(i, x, y, z) → ifTimes(ge(i, x), i, x, y, z)
ifTimes(true, i, x, y, z) → z
ifTimes(false, i, x, y, z) → timesIter(inc(i), x, y, plus(z, y))
isZero(0) → true
isZero(s(0)) → false
isZero(s(s(x))) → isZero(s(x))
inc(0) → s(0)
inc(s(x)) → s(inc(x))
inc(x) → s(x)
p(0) → 0
p(s(x)) → x
p(s(s(x))) → s(p(s(x)))
ge(x, 0) → true
ge(0, s(y)) → false
ge(s(x), s(y)) → ge(x, y)
f0(0, y, x) → f1(x, y, x)
f1(x, y, z) → f2(x, y, z)
f2(x, 1, z) → f0(x, z, z)
f0(x, y, z) → d
f1(x, y, z) → c
The set Q consists of the following terms:
plus(x0, x1)
ifPlus(true, x0, x1)
ifPlus(false, x0, x1)
times(x0, x1)
timesIter(x0, x1, x2, x3)
ifTimes(true, x0, x1, x2, x3)
ifTimes(false, x0, x1, x2, x3)
isZero(0)
isZero(s(0))
isZero(s(s(x0)))
inc(x0)
p(0)
p(s(x0))
ge(x0, 0)
ge(0, s(x0))
ge(s(x0), s(x1))
f1(x0, x1, x2)
f2(x0, 1, x1)
f0(x0, x1, x2)
We have to consider all minimal (P,Q,R)-chains.
(11) Obligation:
Q DP problem:
The TRS P consists of the following rules:
ISZERO(s(s(x))) → ISZERO(s(x))
The TRS R consists of the following rules:
plus(x, y) → ifPlus(isZero(x), x, inc(y))
ifPlus(true, x, y) → p(y)
ifPlus(false, x, y) → plus(p(x), y)
times(x, y) → timesIter(0, x, y, 0)
timesIter(i, x, y, z) → ifTimes(ge(i, x), i, x, y, z)
ifTimes(true, i, x, y, z) → z
ifTimes(false, i, x, y, z) → timesIter(inc(i), x, y, plus(z, y))
isZero(0) → true
isZero(s(0)) → false
isZero(s(s(x))) → isZero(s(x))
inc(0) → s(0)
inc(s(x)) → s(inc(x))
inc(x) → s(x)
p(0) → 0
p(s(x)) → x
p(s(s(x))) → s(p(s(x)))
ge(x, 0) → true
ge(0, s(y)) → false
ge(s(x), s(y)) → ge(x, y)
f0(0, y, x) → f1(x, y, x)
f1(x, y, z) → f2(x, y, z)
f2(x, 1, z) → f0(x, z, z)
f0(x, y, z) → d
f1(x, y, z) → c
The set Q consists of the following terms:
plus(x0, x1)
ifPlus(true, x0, x1)
ifPlus(false, x0, x1)
times(x0, x1)
timesIter(x0, x1, x2, x3)
ifTimes(true, x0, x1, x2, x3)
ifTimes(false, x0, x1, x2, x3)
isZero(0)
isZero(s(0))
isZero(s(s(x0)))
inc(x0)
p(0)
p(s(x0))
ge(x0, 0)
ge(0, s(x0))
ge(s(x0), s(x1))
f1(x0, x1, x2)
f2(x0, 1, x1)
f0(x0, x1, x2)
We have to consider all minimal (P,Q,R)-chains.
(12) Obligation:
Q DP problem:
The TRS P consists of the following rules:
IFPLUS(false, x, y) → PLUS(p(x), y)
PLUS(x, y) → IFPLUS(isZero(x), x, inc(y))
The TRS R consists of the following rules:
plus(x, y) → ifPlus(isZero(x), x, inc(y))
ifPlus(true, x, y) → p(y)
ifPlus(false, x, y) → plus(p(x), y)
times(x, y) → timesIter(0, x, y, 0)
timesIter(i, x, y, z) → ifTimes(ge(i, x), i, x, y, z)
ifTimes(true, i, x, y, z) → z
ifTimes(false, i, x, y, z) → timesIter(inc(i), x, y, plus(z, y))
isZero(0) → true
isZero(s(0)) → false
isZero(s(s(x))) → isZero(s(x))
inc(0) → s(0)
inc(s(x)) → s(inc(x))
inc(x) → s(x)
p(0) → 0
p(s(x)) → x
p(s(s(x))) → s(p(s(x)))
ge(x, 0) → true
ge(0, s(y)) → false
ge(s(x), s(y)) → ge(x, y)
f0(0, y, x) → f1(x, y, x)
f1(x, y, z) → f2(x, y, z)
f2(x, 1, z) → f0(x, z, z)
f0(x, y, z) → d
f1(x, y, z) → c
The set Q consists of the following terms:
plus(x0, x1)
ifPlus(true, x0, x1)
ifPlus(false, x0, x1)
times(x0, x1)
timesIter(x0, x1, x2, x3)
ifTimes(true, x0, x1, x2, x3)
ifTimes(false, x0, x1, x2, x3)
isZero(0)
isZero(s(0))
isZero(s(s(x0)))
inc(x0)
p(0)
p(s(x0))
ge(x0, 0)
ge(0, s(x0))
ge(s(x0), s(x1))
f1(x0, x1, x2)
f2(x0, 1, x1)
f0(x0, x1, x2)
We have to consider all minimal (P,Q,R)-chains.
(13) Obligation:
Q DP problem:
The TRS P consists of the following rules:
IFTIMES(false, i, x, y, z) → TIMESITER(inc(i), x, y, plus(z, y))
TIMESITER(i, x, y, z) → IFTIMES(ge(i, x), i, x, y, z)
The TRS R consists of the following rules:
plus(x, y) → ifPlus(isZero(x), x, inc(y))
ifPlus(true, x, y) → p(y)
ifPlus(false, x, y) → plus(p(x), y)
times(x, y) → timesIter(0, x, y, 0)
timesIter(i, x, y, z) → ifTimes(ge(i, x), i, x, y, z)
ifTimes(true, i, x, y, z) → z
ifTimes(false, i, x, y, z) → timesIter(inc(i), x, y, plus(z, y))
isZero(0) → true
isZero(s(0)) → false
isZero(s(s(x))) → isZero(s(x))
inc(0) → s(0)
inc(s(x)) → s(inc(x))
inc(x) → s(x)
p(0) → 0
p(s(x)) → x
p(s(s(x))) → s(p(s(x)))
ge(x, 0) → true
ge(0, s(y)) → false
ge(s(x), s(y)) → ge(x, y)
f0(0, y, x) → f1(x, y, x)
f1(x, y, z) → f2(x, y, z)
f2(x, 1, z) → f0(x, z, z)
f0(x, y, z) → d
f1(x, y, z) → c
The set Q consists of the following terms:
plus(x0, x1)
ifPlus(true, x0, x1)
ifPlus(false, x0, x1)
times(x0, x1)
timesIter(x0, x1, x2, x3)
ifTimes(true, x0, x1, x2, x3)
ifTimes(false, x0, x1, x2, x3)
isZero(0)
isZero(s(0))
isZero(s(s(x0)))
inc(x0)
p(0)
p(s(x0))
ge(x0, 0)
ge(0, s(x0))
ge(s(x0), s(x1))
f1(x0, x1, x2)
f2(x0, 1, x1)
f0(x0, x1, x2)
We have to consider all minimal (P,Q,R)-chains.