(0) Obligation:
Q restricted rewrite system:
The TRS R consists of the following rules:
min(0, y) → 0
min(x, 0) → 0
min(s(x), s(y)) → s(min(x, y))
max(0, y) → y
max(x, 0) → x
max(s(x), s(y)) → s(max(x, y))
+(0, y) → y
+(s(x), y) → s(+(x, y))
-(x, 0) → x
-(s(x), s(y)) → -(x, y)
*(x, 0) → 0
*(x, s(y)) → +(x, *(x, y))
p(s(x)) → x
f(s(x), s(y)) → f(-(min(s(x), s(y)), max(s(x), s(y))), *(s(x), s(y)))
Q is empty.
(1) AAECC Innermost (EQUIVALENT transformation)
We have applied [NOC,AAECCNOC] to switch to innermost. The TRS R 1 is
min(x, 0) → 0
min(s(x), s(y)) → s(min(x, y))
max(0, y) → y
max(x, 0) → x
max(s(x), s(y)) → s(max(x, y))
+(0, y) → y
+(s(x), y) → s(+(x, y))
-(x, 0) → x
-(s(x), s(y)) → -(x, y)
*(x, 0) → 0
*(x, s(y)) → +(x, *(x, y))
p(s(x)) → x
min(0, y) → 0
The TRS R 2 is
f(s(x), s(y)) → f(-(min(s(x), s(y)), max(s(x), s(y))), *(s(x), s(y)))
The signature Sigma is {
f}
(2) Obligation:
Q restricted rewrite system:
The TRS R consists of the following rules:
min(0, y) → 0
min(x, 0) → 0
min(s(x), s(y)) → s(min(x, y))
max(0, y) → y
max(x, 0) → x
max(s(x), s(y)) → s(max(x, y))
+(0, y) → y
+(s(x), y) → s(+(x, y))
-(x, 0) → x
-(s(x), s(y)) → -(x, y)
*(x, 0) → 0
*(x, s(y)) → +(x, *(x, y))
p(s(x)) → x
f(s(x), s(y)) → f(-(min(s(x), s(y)), max(s(x), s(y))), *(s(x), s(y)))
The set Q consists of the following terms:
min(0, x0)
min(x0, 0)
min(s(x0), s(x1))
max(0, x0)
max(x0, 0)
max(s(x0), s(x1))
+(0, x0)
+(s(x0), x1)
-(x0, 0)
-(s(x0), s(x1))
*(x0, 0)
*(x0, s(x1))
p(s(x0))
f(s(x0), s(x1))
(3) DependencyPairsProof (EQUIVALENT transformation)
Using Dependency Pairs [AG00,LPAR04] we result in the following initial DP problem.
(4) Obligation:
Q DP problem:
The TRS P consists of the following rules:
MIN(s(x), s(y)) → MIN(x, y)
MAX(s(x), s(y)) → MAX(x, y)
+1(s(x), y) → +1(x, y)
-1(s(x), s(y)) → -1(x, y)
*1(x, s(y)) → +1(x, *(x, y))
*1(x, s(y)) → *1(x, y)
F(s(x), s(y)) → F(-(min(s(x), s(y)), max(s(x), s(y))), *(s(x), s(y)))
F(s(x), s(y)) → -1(min(s(x), s(y)), max(s(x), s(y)))
F(s(x), s(y)) → MIN(s(x), s(y))
F(s(x), s(y)) → MAX(s(x), s(y))
F(s(x), s(y)) → *1(s(x), s(y))
The TRS R consists of the following rules:
min(0, y) → 0
min(x, 0) → 0
min(s(x), s(y)) → s(min(x, y))
max(0, y) → y
max(x, 0) → x
max(s(x), s(y)) → s(max(x, y))
+(0, y) → y
+(s(x), y) → s(+(x, y))
-(x, 0) → x
-(s(x), s(y)) → -(x, y)
*(x, 0) → 0
*(x, s(y)) → +(x, *(x, y))
p(s(x)) → x
f(s(x), s(y)) → f(-(min(s(x), s(y)), max(s(x), s(y))), *(s(x), s(y)))
The set Q consists of the following terms:
min(0, x0)
min(x0, 0)
min(s(x0), s(x1))
max(0, x0)
max(x0, 0)
max(s(x0), s(x1))
+(0, x0)
+(s(x0), x1)
-(x0, 0)
-(s(x0), s(x1))
*(x0, 0)
*(x0, s(x1))
p(s(x0))
f(s(x0), s(x1))
We have to consider all minimal (P,Q,R)-chains.
(5) DependencyGraphProof (EQUIVALENT transformation)
The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 6 SCCs with 5 less nodes.
(6) Complex Obligation (AND)
(7) Obligation:
Q DP problem:
The TRS P consists of the following rules:
-1(s(x), s(y)) → -1(x, y)
The TRS R consists of the following rules:
min(0, y) → 0
min(x, 0) → 0
min(s(x), s(y)) → s(min(x, y))
max(0, y) → y
max(x, 0) → x
max(s(x), s(y)) → s(max(x, y))
+(0, y) → y
+(s(x), y) → s(+(x, y))
-(x, 0) → x
-(s(x), s(y)) → -(x, y)
*(x, 0) → 0
*(x, s(y)) → +(x, *(x, y))
p(s(x)) → x
f(s(x), s(y)) → f(-(min(s(x), s(y)), max(s(x), s(y))), *(s(x), s(y)))
The set Q consists of the following terms:
min(0, x0)
min(x0, 0)
min(s(x0), s(x1))
max(0, x0)
max(x0, 0)
max(s(x0), s(x1))
+(0, x0)
+(s(x0), x1)
-(x0, 0)
-(s(x0), s(x1))
*(x0, 0)
*(x0, s(x1))
p(s(x0))
f(s(x0), s(x1))
We have to consider all minimal (P,Q,R)-chains.
(8) Obligation:
Q DP problem:
The TRS P consists of the following rules:
+1(s(x), y) → +1(x, y)
The TRS R consists of the following rules:
min(0, y) → 0
min(x, 0) → 0
min(s(x), s(y)) → s(min(x, y))
max(0, y) → y
max(x, 0) → x
max(s(x), s(y)) → s(max(x, y))
+(0, y) → y
+(s(x), y) → s(+(x, y))
-(x, 0) → x
-(s(x), s(y)) → -(x, y)
*(x, 0) → 0
*(x, s(y)) → +(x, *(x, y))
p(s(x)) → x
f(s(x), s(y)) → f(-(min(s(x), s(y)), max(s(x), s(y))), *(s(x), s(y)))
The set Q consists of the following terms:
min(0, x0)
min(x0, 0)
min(s(x0), s(x1))
max(0, x0)
max(x0, 0)
max(s(x0), s(x1))
+(0, x0)
+(s(x0), x1)
-(x0, 0)
-(s(x0), s(x1))
*(x0, 0)
*(x0, s(x1))
p(s(x0))
f(s(x0), s(x1))
We have to consider all minimal (P,Q,R)-chains.
(9) Obligation:
Q DP problem:
The TRS P consists of the following rules:
*1(x, s(y)) → *1(x, y)
The TRS R consists of the following rules:
min(0, y) → 0
min(x, 0) → 0
min(s(x), s(y)) → s(min(x, y))
max(0, y) → y
max(x, 0) → x
max(s(x), s(y)) → s(max(x, y))
+(0, y) → y
+(s(x), y) → s(+(x, y))
-(x, 0) → x
-(s(x), s(y)) → -(x, y)
*(x, 0) → 0
*(x, s(y)) → +(x, *(x, y))
p(s(x)) → x
f(s(x), s(y)) → f(-(min(s(x), s(y)), max(s(x), s(y))), *(s(x), s(y)))
The set Q consists of the following terms:
min(0, x0)
min(x0, 0)
min(s(x0), s(x1))
max(0, x0)
max(x0, 0)
max(s(x0), s(x1))
+(0, x0)
+(s(x0), x1)
-(x0, 0)
-(s(x0), s(x1))
*(x0, 0)
*(x0, s(x1))
p(s(x0))
f(s(x0), s(x1))
We have to consider all minimal (P,Q,R)-chains.
(10) Obligation:
Q DP problem:
The TRS P consists of the following rules:
MAX(s(x), s(y)) → MAX(x, y)
The TRS R consists of the following rules:
min(0, y) → 0
min(x, 0) → 0
min(s(x), s(y)) → s(min(x, y))
max(0, y) → y
max(x, 0) → x
max(s(x), s(y)) → s(max(x, y))
+(0, y) → y
+(s(x), y) → s(+(x, y))
-(x, 0) → x
-(s(x), s(y)) → -(x, y)
*(x, 0) → 0
*(x, s(y)) → +(x, *(x, y))
p(s(x)) → x
f(s(x), s(y)) → f(-(min(s(x), s(y)), max(s(x), s(y))), *(s(x), s(y)))
The set Q consists of the following terms:
min(0, x0)
min(x0, 0)
min(s(x0), s(x1))
max(0, x0)
max(x0, 0)
max(s(x0), s(x1))
+(0, x0)
+(s(x0), x1)
-(x0, 0)
-(s(x0), s(x1))
*(x0, 0)
*(x0, s(x1))
p(s(x0))
f(s(x0), s(x1))
We have to consider all minimal (P,Q,R)-chains.
(11) Obligation:
Q DP problem:
The TRS P consists of the following rules:
MIN(s(x), s(y)) → MIN(x, y)
The TRS R consists of the following rules:
min(0, y) → 0
min(x, 0) → 0
min(s(x), s(y)) → s(min(x, y))
max(0, y) → y
max(x, 0) → x
max(s(x), s(y)) → s(max(x, y))
+(0, y) → y
+(s(x), y) → s(+(x, y))
-(x, 0) → x
-(s(x), s(y)) → -(x, y)
*(x, 0) → 0
*(x, s(y)) → +(x, *(x, y))
p(s(x)) → x
f(s(x), s(y)) → f(-(min(s(x), s(y)), max(s(x), s(y))), *(s(x), s(y)))
The set Q consists of the following terms:
min(0, x0)
min(x0, 0)
min(s(x0), s(x1))
max(0, x0)
max(x0, 0)
max(s(x0), s(x1))
+(0, x0)
+(s(x0), x1)
-(x0, 0)
-(s(x0), s(x1))
*(x0, 0)
*(x0, s(x1))
p(s(x0))
f(s(x0), s(x1))
We have to consider all minimal (P,Q,R)-chains.
(12) Obligation:
Q DP problem:
The TRS P consists of the following rules:
F(s(x), s(y)) → F(-(min(s(x), s(y)), max(s(x), s(y))), *(s(x), s(y)))
The TRS R consists of the following rules:
min(0, y) → 0
min(x, 0) → 0
min(s(x), s(y)) → s(min(x, y))
max(0, y) → y
max(x, 0) → x
max(s(x), s(y)) → s(max(x, y))
+(0, y) → y
+(s(x), y) → s(+(x, y))
-(x, 0) → x
-(s(x), s(y)) → -(x, y)
*(x, 0) → 0
*(x, s(y)) → +(x, *(x, y))
p(s(x)) → x
f(s(x), s(y)) → f(-(min(s(x), s(y)), max(s(x), s(y))), *(s(x), s(y)))
The set Q consists of the following terms:
min(0, x0)
min(x0, 0)
min(s(x0), s(x1))
max(0, x0)
max(x0, 0)
max(s(x0), s(x1))
+(0, x0)
+(s(x0), x1)
-(x0, 0)
-(s(x0), s(x1))
*(x0, 0)
*(x0, s(x1))
p(s(x0))
f(s(x0), s(x1))
We have to consider all minimal (P,Q,R)-chains.