(0) Obligation:
Q restricted rewrite system:
The TRS R consists of the following rules:
min(0, y) → 0
min(x, 0) → 0
min(s(x), s(y)) → s(min(x, y))
max(0, y) → y
max(x, 0) → x
max(s(x), s(y)) → s(max(x, y))
p(s(x)) → x
f(s(x), s(y), s(z)) → f(max(s(x), max(s(y), s(z))), p(min(s(x), max(s(y), s(z)))), min(s(x), min(s(y), s(z))))
f(0, y, z) → max(y, z)
f(x, 0, z) → max(x, z)
f(x, y, 0) → max(x, y)
Q is empty.
(1) Overlay + Local Confluence (EQUIVALENT transformation)
The TRS is overlay and locally confluent. By [NOC] we can switch to innermost.
(2) Obligation:
Q restricted rewrite system:
The TRS R consists of the following rules:
min(0, y) → 0
min(x, 0) → 0
min(s(x), s(y)) → s(min(x, y))
max(0, y) → y
max(x, 0) → x
max(s(x), s(y)) → s(max(x, y))
p(s(x)) → x
f(s(x), s(y), s(z)) → f(max(s(x), max(s(y), s(z))), p(min(s(x), max(s(y), s(z)))), min(s(x), min(s(y), s(z))))
f(0, y, z) → max(y, z)
f(x, 0, z) → max(x, z)
f(x, y, 0) → max(x, y)
The set Q consists of the following terms:
min(0, x0)
min(x0, 0)
min(s(x0), s(x1))
max(0, x0)
max(x0, 0)
max(s(x0), s(x1))
p(s(x0))
f(s(x0), s(x1), s(x2))
f(0, x0, x1)
f(x0, 0, x1)
f(x0, x1, 0)
(3) DependencyPairsProof (EQUIVALENT transformation)
Using Dependency Pairs [AG00,LPAR04] we result in the following initial DP problem.
(4) Obligation:
Q DP problem:
The TRS P consists of the following rules:
MIN(s(x), s(y)) → MIN(x, y)
MAX(s(x), s(y)) → MAX(x, y)
F(s(x), s(y), s(z)) → F(max(s(x), max(s(y), s(z))), p(min(s(x), max(s(y), s(z)))), min(s(x), min(s(y), s(z))))
F(s(x), s(y), s(z)) → MAX(s(x), max(s(y), s(z)))
F(s(x), s(y), s(z)) → MAX(s(y), s(z))
F(s(x), s(y), s(z)) → P(min(s(x), max(s(y), s(z))))
F(s(x), s(y), s(z)) → MIN(s(x), max(s(y), s(z)))
F(s(x), s(y), s(z)) → MIN(s(x), min(s(y), s(z)))
F(s(x), s(y), s(z)) → MIN(s(y), s(z))
F(0, y, z) → MAX(y, z)
F(x, 0, z) → MAX(x, z)
F(x, y, 0) → MAX(x, y)
The TRS R consists of the following rules:
min(0, y) → 0
min(x, 0) → 0
min(s(x), s(y)) → s(min(x, y))
max(0, y) → y
max(x, 0) → x
max(s(x), s(y)) → s(max(x, y))
p(s(x)) → x
f(s(x), s(y), s(z)) → f(max(s(x), max(s(y), s(z))), p(min(s(x), max(s(y), s(z)))), min(s(x), min(s(y), s(z))))
f(0, y, z) → max(y, z)
f(x, 0, z) → max(x, z)
f(x, y, 0) → max(x, y)
The set Q consists of the following terms:
min(0, x0)
min(x0, 0)
min(s(x0), s(x1))
max(0, x0)
max(x0, 0)
max(s(x0), s(x1))
p(s(x0))
f(s(x0), s(x1), s(x2))
f(0, x0, x1)
f(x0, 0, x1)
f(x0, x1, 0)
We have to consider all minimal (P,Q,R)-chains.
(5) DependencyGraphProof (EQUIVALENT transformation)
The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 3 SCCs with 9 less nodes.
(6) Complex Obligation (AND)
(7) Obligation:
Q DP problem:
The TRS P consists of the following rules:
MAX(s(x), s(y)) → MAX(x, y)
The TRS R consists of the following rules:
min(0, y) → 0
min(x, 0) → 0
min(s(x), s(y)) → s(min(x, y))
max(0, y) → y
max(x, 0) → x
max(s(x), s(y)) → s(max(x, y))
p(s(x)) → x
f(s(x), s(y), s(z)) → f(max(s(x), max(s(y), s(z))), p(min(s(x), max(s(y), s(z)))), min(s(x), min(s(y), s(z))))
f(0, y, z) → max(y, z)
f(x, 0, z) → max(x, z)
f(x, y, 0) → max(x, y)
The set Q consists of the following terms:
min(0, x0)
min(x0, 0)
min(s(x0), s(x1))
max(0, x0)
max(x0, 0)
max(s(x0), s(x1))
p(s(x0))
f(s(x0), s(x1), s(x2))
f(0, x0, x1)
f(x0, 0, x1)
f(x0, x1, 0)
We have to consider all minimal (P,Q,R)-chains.
(8) Obligation:
Q DP problem:
The TRS P consists of the following rules:
MIN(s(x), s(y)) → MIN(x, y)
The TRS R consists of the following rules:
min(0, y) → 0
min(x, 0) → 0
min(s(x), s(y)) → s(min(x, y))
max(0, y) → y
max(x, 0) → x
max(s(x), s(y)) → s(max(x, y))
p(s(x)) → x
f(s(x), s(y), s(z)) → f(max(s(x), max(s(y), s(z))), p(min(s(x), max(s(y), s(z)))), min(s(x), min(s(y), s(z))))
f(0, y, z) → max(y, z)
f(x, 0, z) → max(x, z)
f(x, y, 0) → max(x, y)
The set Q consists of the following terms:
min(0, x0)
min(x0, 0)
min(s(x0), s(x1))
max(0, x0)
max(x0, 0)
max(s(x0), s(x1))
p(s(x0))
f(s(x0), s(x1), s(x2))
f(0, x0, x1)
f(x0, 0, x1)
f(x0, x1, 0)
We have to consider all minimal (P,Q,R)-chains.
(9) Obligation:
Q DP problem:
The TRS P consists of the following rules:
F(s(x), s(y), s(z)) → F(max(s(x), max(s(y), s(z))), p(min(s(x), max(s(y), s(z)))), min(s(x), min(s(y), s(z))))
The TRS R consists of the following rules:
min(0, y) → 0
min(x, 0) → 0
min(s(x), s(y)) → s(min(x, y))
max(0, y) → y
max(x, 0) → x
max(s(x), s(y)) → s(max(x, y))
p(s(x)) → x
f(s(x), s(y), s(z)) → f(max(s(x), max(s(y), s(z))), p(min(s(x), max(s(y), s(z)))), min(s(x), min(s(y), s(z))))
f(0, y, z) → max(y, z)
f(x, 0, z) → max(x, z)
f(x, y, 0) → max(x, y)
The set Q consists of the following terms:
min(0, x0)
min(x0, 0)
min(s(x0), s(x1))
max(0, x0)
max(x0, 0)
max(s(x0), s(x1))
p(s(x0))
f(s(x0), s(x1), s(x2))
f(0, x0, x1)
f(x0, 0, x1)
f(x0, x1, 0)
We have to consider all minimal (P,Q,R)-chains.