(0) Obligation:

Q restricted rewrite system:
The TRS R consists of the following rules:

b(a, b(c(z, x, y), a)) → b(b(z, c(y, z, a)), x)
f(c(a, b(b(z, a), y), x)) → f(c(x, b(z, x), y))
c(f(c(a, y, a)), x, z) → f(b(b(z, z), f(b(y, b(x, a)))))

Q is empty.

(1) DependencyPairsProof (EQUIVALENT transformation)

Using Dependency Pairs [AG00,LPAR04] we result in the following initial DP problem.

(2) Obligation:

Q DP problem:
The TRS P consists of the following rules:

B(a, b(c(z, x, y), a)) → B(b(z, c(y, z, a)), x)
B(a, b(c(z, x, y), a)) → B(z, c(y, z, a))
B(a, b(c(z, x, y), a)) → C(y, z, a)
F(c(a, b(b(z, a), y), x)) → F(c(x, b(z, x), y))
F(c(a, b(b(z, a), y), x)) → C(x, b(z, x), y)
F(c(a, b(b(z, a), y), x)) → B(z, x)
C(f(c(a, y, a)), x, z) → F(b(b(z, z), f(b(y, b(x, a)))))
C(f(c(a, y, a)), x, z) → B(b(z, z), f(b(y, b(x, a))))
C(f(c(a, y, a)), x, z) → B(z, z)
C(f(c(a, y, a)), x, z) → F(b(y, b(x, a)))
C(f(c(a, y, a)), x, z) → B(y, b(x, a))
C(f(c(a, y, a)), x, z) → B(x, a)

The TRS R consists of the following rules:

b(a, b(c(z, x, y), a)) → b(b(z, c(y, z, a)), x)
f(c(a, b(b(z, a), y), x)) → f(c(x, b(z, x), y))
c(f(c(a, y, a)), x, z) → f(b(b(z, z), f(b(y, b(x, a)))))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(3) DependencyGraphProof (EQUIVALENT transformation)

The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 2 SCCs with 9 less nodes.

(4) Complex Obligation (AND)

(5) Obligation:

Q DP problem:
The TRS P consists of the following rules:

B(a, b(c(z, x, y), a)) → C(y, z, a)
C(f(c(a, y, a)), x, z) → B(y, b(x, a))

The TRS R consists of the following rules:

b(a, b(c(z, x, y), a)) → b(b(z, c(y, z, a)), x)
f(c(a, b(b(z, a), y), x)) → f(c(x, b(z, x), y))
c(f(c(a, y, a)), x, z) → f(b(b(z, z), f(b(y, b(x, a)))))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(6) UsableRulesProof (EQUIVALENT transformation)

We can use the usable rules and reduction pair processor [LPAR04] with the Ce-compatible extension of the polynomial order that maps every function symbol to the sum of its arguments. Then, we can delete all non-usable rules [FROCOS05] from R.

(7) Obligation:

Q DP problem:
The TRS P consists of the following rules:

B(a, b(c(z, x, y), a)) → C(y, z, a)
C(f(c(a, y, a)), x, z) → B(y, b(x, a))

R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(8) UsableRulesReductionPairsProof (EQUIVALENT transformation)

By using the usable rules with reduction pair processor [LPAR04] with a polynomial ordering [POLO], all dependency pairs and the corresponding usable rules [FROCOS05] can be oriented non-strictly. All non-usable rules are removed, and those dependency pairs and usable rules that have been oriented strictly or contain non-usable symbols in their left-hand side are removed as well.

The following dependency pairs can be deleted:

B(a, b(c(z, x, y), a)) → C(y, z, a)
C(f(c(a, y, a)), x, z) → B(y, b(x, a))
No rules are removed from R.

Used ordering: POLO with Polynomial interpretation [POLO]:

POL(B(x1, x2)) = 2·x1 + x2   
POL(C(x1, x2, x3)) = x1 + 2·x2 + 2·x3   
POL(a) = 0   
POL(b(x1, x2)) = x1 + 2·x2   
POL(c(x1, x2, x3)) = 2·x1 + 2·x2 + x3   
POL(f(x1)) = 2 + x1   

(9) Obligation:

Q DP problem:
P is empty.
R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(10) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(11) TRUE

(12) Obligation:

Q DP problem:
The TRS P consists of the following rules:

F(c(a, b(b(z, a), y), x)) → F(c(x, b(z, x), y))

The TRS R consists of the following rules:

b(a, b(c(z, x, y), a)) → b(b(z, c(y, z, a)), x)
f(c(a, b(b(z, a), y), x)) → f(c(x, b(z, x), y))
c(f(c(a, y, a)), x, z) → f(b(b(z, z), f(b(y, b(x, a)))))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(13) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


F(c(a, b(b(z, a), y), x)) → F(c(x, b(z, x), y))
The remaining pairs can at least be oriented weakly.
Used ordering: Matrix interpretation [MATRO]:

POL(F(x1)) =
/0\
\1/
+
/10\
\00/
·x1

POL(c(x1, x2, x3)) =
/1\
\0/
+
/00\
\11/
·x1 +
/01\
\00/
·x2 +
/01\
\10/
·x3

POL(a) =
/0\
\0/

POL(b(x1, x2)) =
/1\
\1/
+
/00\
\11/
·x1 +
/00\
\01/
·x2

POL(f(x1)) =
/1\
\0/
+
/00\
\00/
·x1

The following usable rules [FROCOS05] were oriented:

c(f(c(a, y, a)), x, z) → f(b(b(z, z), f(b(y, b(x, a)))))
f(c(a, b(b(z, a), y), x)) → f(c(x, b(z, x), y))
b(a, b(c(z, x, y), a)) → b(b(z, c(y, z, a)), x)

(14) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

b(a, b(c(z, x, y), a)) → b(b(z, c(y, z, a)), x)
f(c(a, b(b(z, a), y), x)) → f(c(x, b(z, x), y))
c(f(c(a, y, a)), x, z) → f(b(b(z, z), f(b(y, b(x, a)))))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(15) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(16) TRUE