0 QTRS
↳1 Overlay + Local Confluence (⇔)
↳2 QTRS
↳3 DependencyPairsProof (⇔)
↳4 QDP
↳5 DependencyGraphProof (⇔)
↳6 AND
↳7 QDP
↳8 QDPOrderProof (⇔)
↳9 QDP
↳10 PisEmptyProof (⇔)
↳11 TRUE
↳12 QDP
isEmpty(empty) → true
isEmpty(node(l, x, r)) → false
left(empty) → empty
left(node(l, x, r)) → l
right(empty) → empty
right(node(l, x, r)) → r
elem(node(l, x, r)) → x
append(nil, x) → cons(x, nil)
append(cons(y, ys), x) → cons(y, append(ys, x))
listify(n, xs) → if(isEmpty(n), isEmpty(left(n)), right(n), node(left(left(n)), elem(left(n)), node(right(left(n)), elem(n), right(n))), xs, append(xs, n))
if(true, b, n, m, xs, ys) → xs
if(false, false, n, m, xs, ys) → listify(m, xs)
if(false, true, n, m, xs, ys) → listify(n, ys)
toList(n) → listify(n, nil)
isEmpty(empty) → true
isEmpty(node(l, x, r)) → false
left(empty) → empty
left(node(l, x, r)) → l
right(empty) → empty
right(node(l, x, r)) → r
elem(node(l, x, r)) → x
append(nil, x) → cons(x, nil)
append(cons(y, ys), x) → cons(y, append(ys, x))
listify(n, xs) → if(isEmpty(n), isEmpty(left(n)), right(n), node(left(left(n)), elem(left(n)), node(right(left(n)), elem(n), right(n))), xs, append(xs, n))
if(true, b, n, m, xs, ys) → xs
if(false, false, n, m, xs, ys) → listify(m, xs)
if(false, true, n, m, xs, ys) → listify(n, ys)
toList(n) → listify(n, nil)
isEmpty(empty)
isEmpty(node(x0, x1, x2))
left(empty)
left(node(x0, x1, x2))
right(empty)
right(node(x0, x1, x2))
elem(node(x0, x1, x2))
append(nil, x0)
append(cons(y, x0), x1)
listify(x0, x1)
if(true, x0, x1, x2, x3, x4)
if(false, false, x0, x1, x2, x3)
if(false, true, x0, x1, x2, x3)
toList(x0)
APPEND(cons(y, ys), x) → APPEND(ys, x)
LISTIFY(n, xs) → IF(isEmpty(n), isEmpty(left(n)), right(n), node(left(left(n)), elem(left(n)), node(right(left(n)), elem(n), right(n))), xs, append(xs, n))
LISTIFY(n, xs) → ISEMPTY(n)
LISTIFY(n, xs) → ISEMPTY(left(n))
LISTIFY(n, xs) → LEFT(n)
LISTIFY(n, xs) → RIGHT(n)
LISTIFY(n, xs) → LEFT(left(n))
LISTIFY(n, xs) → ELEM(left(n))
LISTIFY(n, xs) → RIGHT(left(n))
LISTIFY(n, xs) → ELEM(n)
LISTIFY(n, xs) → APPEND(xs, n)
IF(false, false, n, m, xs, ys) → LISTIFY(m, xs)
IF(false, true, n, m, xs, ys) → LISTIFY(n, ys)
TOLIST(n) → LISTIFY(n, nil)
isEmpty(empty) → true
isEmpty(node(l, x, r)) → false
left(empty) → empty
left(node(l, x, r)) → l
right(empty) → empty
right(node(l, x, r)) → r
elem(node(l, x, r)) → x
append(nil, x) → cons(x, nil)
append(cons(y, ys), x) → cons(y, append(ys, x))
listify(n, xs) → if(isEmpty(n), isEmpty(left(n)), right(n), node(left(left(n)), elem(left(n)), node(right(left(n)), elem(n), right(n))), xs, append(xs, n))
if(true, b, n, m, xs, ys) → xs
if(false, false, n, m, xs, ys) → listify(m, xs)
if(false, true, n, m, xs, ys) → listify(n, ys)
toList(n) → listify(n, nil)
isEmpty(empty)
isEmpty(node(x0, x1, x2))
left(empty)
left(node(x0, x1, x2))
right(empty)
right(node(x0, x1, x2))
elem(node(x0, x1, x2))
append(nil, x0)
append(cons(y, x0), x1)
listify(x0, x1)
if(true, x0, x1, x2, x3, x4)
if(false, false, x0, x1, x2, x3)
if(false, true, x0, x1, x2, x3)
toList(x0)
APPEND(cons(y, ys), x) → APPEND(ys, x)
isEmpty(empty) → true
isEmpty(node(l, x, r)) → false
left(empty) → empty
left(node(l, x, r)) → l
right(empty) → empty
right(node(l, x, r)) → r
elem(node(l, x, r)) → x
append(nil, x) → cons(x, nil)
append(cons(y, ys), x) → cons(y, append(ys, x))
listify(n, xs) → if(isEmpty(n), isEmpty(left(n)), right(n), node(left(left(n)), elem(left(n)), node(right(left(n)), elem(n), right(n))), xs, append(xs, n))
if(true, b, n, m, xs, ys) → xs
if(false, false, n, m, xs, ys) → listify(m, xs)
if(false, true, n, m, xs, ys) → listify(n, ys)
toList(n) → listify(n, nil)
isEmpty(empty)
isEmpty(node(x0, x1, x2))
left(empty)
left(node(x0, x1, x2))
right(empty)
right(node(x0, x1, x2))
elem(node(x0, x1, x2))
append(nil, x0)
append(cons(y, x0), x1)
listify(x0, x1)
if(true, x0, x1, x2, x3, x4)
if(false, false, x0, x1, x2, x3)
if(false, true, x0, x1, x2, x3)
toList(x0)
The following pairs can be oriented strictly and are deleted.
The remaining pairs can at least be oriented weakly.
APPEND(cons(y, ys), x) → APPEND(ys, x)
[APPEND2, cons2, y]
APPEND2: [1,2]
cons2: multiset
y: multiset
isEmpty(empty) → true
isEmpty(node(l, x, r)) → false
left(empty) → empty
left(node(l, x, r)) → l
right(empty) → empty
right(node(l, x, r)) → r
elem(node(l, x, r)) → x
append(nil, x) → cons(x, nil)
append(cons(y, ys), x) → cons(y, append(ys, x))
listify(n, xs) → if(isEmpty(n), isEmpty(left(n)), right(n), node(left(left(n)), elem(left(n)), node(right(left(n)), elem(n), right(n))), xs, append(xs, n))
if(true, b, n, m, xs, ys) → xs
if(false, false, n, m, xs, ys) → listify(m, xs)
if(false, true, n, m, xs, ys) → listify(n, ys)
toList(n) → listify(n, nil)
isEmpty(empty)
isEmpty(node(x0, x1, x2))
left(empty)
left(node(x0, x1, x2))
right(empty)
right(node(x0, x1, x2))
elem(node(x0, x1, x2))
append(nil, x0)
append(cons(y, x0), x1)
listify(x0, x1)
if(true, x0, x1, x2, x3, x4)
if(false, false, x0, x1, x2, x3)
if(false, true, x0, x1, x2, x3)
toList(x0)
LISTIFY(n, xs) → IF(isEmpty(n), isEmpty(left(n)), right(n), node(left(left(n)), elem(left(n)), node(right(left(n)), elem(n), right(n))), xs, append(xs, n))
IF(false, false, n, m, xs, ys) → LISTIFY(m, xs)
IF(false, true, n, m, xs, ys) → LISTIFY(n, ys)
isEmpty(empty) → true
isEmpty(node(l, x, r)) → false
left(empty) → empty
left(node(l, x, r)) → l
right(empty) → empty
right(node(l, x, r)) → r
elem(node(l, x, r)) → x
append(nil, x) → cons(x, nil)
append(cons(y, ys), x) → cons(y, append(ys, x))
listify(n, xs) → if(isEmpty(n), isEmpty(left(n)), right(n), node(left(left(n)), elem(left(n)), node(right(left(n)), elem(n), right(n))), xs, append(xs, n))
if(true, b, n, m, xs, ys) → xs
if(false, false, n, m, xs, ys) → listify(m, xs)
if(false, true, n, m, xs, ys) → listify(n, ys)
toList(n) → listify(n, nil)
isEmpty(empty)
isEmpty(node(x0, x1, x2))
left(empty)
left(node(x0, x1, x2))
right(empty)
right(node(x0, x1, x2))
elem(node(x0, x1, x2))
append(nil, x0)
append(cons(y, x0), x1)
listify(x0, x1)
if(true, x0, x1, x2, x3, x4)
if(false, false, x0, x1, x2, x3)
if(false, true, x0, x1, x2, x3)
toList(x0)