(0) Obligation:

Q restricted rewrite system:
The TRS R consists of the following rules:

inc(s(x)) → s(inc(x))
inc(0) → s(0)
plus(x, y) → ifPlus(eq(x, 0), minus(x, s(0)), x, inc(x))
ifPlus(false, x, y, z) → plus(x, z)
ifPlus(true, x, y, z) → y
minus(s(x), s(y)) → minus(x, y)
minus(0, x) → 0
minus(x, 0) → x
minus(x, x) → 0
eq(s(x), s(y)) → eq(x, y)
eq(0, s(x)) → false
eq(s(x), 0) → false
eq(0, 0) → true
eq(x, x) → true
times(x, y) → timesIter(x, y, 0)
timesIter(x, y, z) → ifTimes(eq(x, 0), minus(x, s(0)), y, z, plus(y, z))
ifTimes(true, x, y, z, u) → z
ifTimes(false, x, y, z, u) → timesIter(x, y, u)
fg
fh

Q is empty.

(1) AAECC Innermost (EQUIVALENT transformation)

We have applied [NOC,AAECCNOC] to switch to innermost. The TRS R 1 is

inc(0) → s(0)
ifPlus(true, x, y, z) → y
minus(s(x), s(y)) → minus(x, y)
minus(0, x) → 0
minus(x, 0) → x
minus(x, x) → 0
eq(s(x), s(y)) → eq(x, y)
eq(0, s(x)) → false
eq(s(x), 0) → false
eq(0, 0) → true
eq(x, x) → true
ifTimes(true, x, y, z, u) → z
ifTimes(false, x, y, z, u) → timesIter(x, y, u)
inc(s(x)) → s(inc(x))
plus(x, y) → ifPlus(eq(x, 0), minus(x, s(0)), x, inc(x))
ifPlus(false, x, y, z) → plus(x, z)
times(x, y) → timesIter(x, y, 0)
timesIter(x, y, z) → ifTimes(eq(x, 0), minus(x, s(0)), y, z, plus(y, z))

The TRS R 2 is

fg
fh

The signature Sigma is {f, g, h}

(2) Obligation:

Q restricted rewrite system:
The TRS R consists of the following rules:

inc(s(x)) → s(inc(x))
inc(0) → s(0)
plus(x, y) → ifPlus(eq(x, 0), minus(x, s(0)), x, inc(x))
ifPlus(false, x, y, z) → plus(x, z)
ifPlus(true, x, y, z) → y
minus(s(x), s(y)) → minus(x, y)
minus(0, x) → 0
minus(x, 0) → x
minus(x, x) → 0
eq(s(x), s(y)) → eq(x, y)
eq(0, s(x)) → false
eq(s(x), 0) → false
eq(0, 0) → true
eq(x, x) → true
times(x, y) → timesIter(x, y, 0)
timesIter(x, y, z) → ifTimes(eq(x, 0), minus(x, s(0)), y, z, plus(y, z))
ifTimes(true, x, y, z, u) → z
ifTimes(false, x, y, z, u) → timesIter(x, y, u)
fg
fh

The set Q consists of the following terms:

inc(s(x0))
inc(0)
plus(x0, x1)
ifPlus(false, x0, x1, x2)
ifPlus(true, x0, x1, x2)
minus(s(x0), s(x1))
minus(0, x0)
minus(x0, 0)
minus(x0, x0)
eq(s(x0), s(x1))
eq(0, s(x0))
eq(s(x0), 0)
eq(x0, x0)
times(x0, x1)
timesIter(x0, x1, x2)
ifTimes(true, x0, x1, x2, x3)
ifTimes(false, x0, x1, x2, x3)
f

(3) DependencyPairsProof (EQUIVALENT transformation)

Using Dependency Pairs [AG00,LPAR04] we result in the following initial DP problem.

(4) Obligation:

Q DP problem:
The TRS P consists of the following rules:

INC(s(x)) → INC(x)
PLUS(x, y) → IFPLUS(eq(x, 0), minus(x, s(0)), x, inc(x))
PLUS(x, y) → EQ(x, 0)
PLUS(x, y) → MINUS(x, s(0))
PLUS(x, y) → INC(x)
IFPLUS(false, x, y, z) → PLUS(x, z)
MINUS(s(x), s(y)) → MINUS(x, y)
EQ(s(x), s(y)) → EQ(x, y)
TIMES(x, y) → TIMESITER(x, y, 0)
TIMESITER(x, y, z) → IFTIMES(eq(x, 0), minus(x, s(0)), y, z, plus(y, z))
TIMESITER(x, y, z) → EQ(x, 0)
TIMESITER(x, y, z) → MINUS(x, s(0))
TIMESITER(x, y, z) → PLUS(y, z)
IFTIMES(false, x, y, z, u) → TIMESITER(x, y, u)

The TRS R consists of the following rules:

inc(s(x)) → s(inc(x))
inc(0) → s(0)
plus(x, y) → ifPlus(eq(x, 0), minus(x, s(0)), x, inc(x))
ifPlus(false, x, y, z) → plus(x, z)
ifPlus(true, x, y, z) → y
minus(s(x), s(y)) → minus(x, y)
minus(0, x) → 0
minus(x, 0) → x
minus(x, x) → 0
eq(s(x), s(y)) → eq(x, y)
eq(0, s(x)) → false
eq(s(x), 0) → false
eq(0, 0) → true
eq(x, x) → true
times(x, y) → timesIter(x, y, 0)
timesIter(x, y, z) → ifTimes(eq(x, 0), minus(x, s(0)), y, z, plus(y, z))
ifTimes(true, x, y, z, u) → z
ifTimes(false, x, y, z, u) → timesIter(x, y, u)
fg
fh

The set Q consists of the following terms:

inc(s(x0))
inc(0)
plus(x0, x1)
ifPlus(false, x0, x1, x2)
ifPlus(true, x0, x1, x2)
minus(s(x0), s(x1))
minus(0, x0)
minus(x0, 0)
minus(x0, x0)
eq(s(x0), s(x1))
eq(0, s(x0))
eq(s(x0), 0)
eq(x0, x0)
times(x0, x1)
timesIter(x0, x1, x2)
ifTimes(true, x0, x1, x2, x3)
ifTimes(false, x0, x1, x2, x3)
f

We have to consider all minimal (P,Q,R)-chains.

(5) DependencyGraphProof (EQUIVALENT transformation)

The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 5 SCCs with 7 less nodes.

(6) Complex Obligation (AND)

(7) Obligation:

Q DP problem:
The TRS P consists of the following rules:

EQ(s(x), s(y)) → EQ(x, y)

The TRS R consists of the following rules:

inc(s(x)) → s(inc(x))
inc(0) → s(0)
plus(x, y) → ifPlus(eq(x, 0), minus(x, s(0)), x, inc(x))
ifPlus(false, x, y, z) → plus(x, z)
ifPlus(true, x, y, z) → y
minus(s(x), s(y)) → minus(x, y)
minus(0, x) → 0
minus(x, 0) → x
minus(x, x) → 0
eq(s(x), s(y)) → eq(x, y)
eq(0, s(x)) → false
eq(s(x), 0) → false
eq(0, 0) → true
eq(x, x) → true
times(x, y) → timesIter(x, y, 0)
timesIter(x, y, z) → ifTimes(eq(x, 0), minus(x, s(0)), y, z, plus(y, z))
ifTimes(true, x, y, z, u) → z
ifTimes(false, x, y, z, u) → timesIter(x, y, u)
fg
fh

The set Q consists of the following terms:

inc(s(x0))
inc(0)
plus(x0, x1)
ifPlus(false, x0, x1, x2)
ifPlus(true, x0, x1, x2)
minus(s(x0), s(x1))
minus(0, x0)
minus(x0, 0)
minus(x0, x0)
eq(s(x0), s(x1))
eq(0, s(x0))
eq(s(x0), 0)
eq(x0, x0)
times(x0, x1)
timesIter(x0, x1, x2)
ifTimes(true, x0, x1, x2, x3)
ifTimes(false, x0, x1, x2, x3)
f

We have to consider all minimal (P,Q,R)-chains.

(8) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


EQ(s(x), s(y)) → EQ(x, y)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
EQ(x1, x2)  =  EQ(x2)
s(x1)  =  s(x1)

Recursive path order with status [RPO].
Quasi-Precedence:
[EQ1, s1]

Status:
EQ1: multiset
s1: [1]


The following usable rules [FROCOS05] were oriented: none

(9) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

inc(s(x)) → s(inc(x))
inc(0) → s(0)
plus(x, y) → ifPlus(eq(x, 0), minus(x, s(0)), x, inc(x))
ifPlus(false, x, y, z) → plus(x, z)
ifPlus(true, x, y, z) → y
minus(s(x), s(y)) → minus(x, y)
minus(0, x) → 0
minus(x, 0) → x
minus(x, x) → 0
eq(s(x), s(y)) → eq(x, y)
eq(0, s(x)) → false
eq(s(x), 0) → false
eq(0, 0) → true
eq(x, x) → true
times(x, y) → timesIter(x, y, 0)
timesIter(x, y, z) → ifTimes(eq(x, 0), minus(x, s(0)), y, z, plus(y, z))
ifTimes(true, x, y, z, u) → z
ifTimes(false, x, y, z, u) → timesIter(x, y, u)
fg
fh

The set Q consists of the following terms:

inc(s(x0))
inc(0)
plus(x0, x1)
ifPlus(false, x0, x1, x2)
ifPlus(true, x0, x1, x2)
minus(s(x0), s(x1))
minus(0, x0)
minus(x0, 0)
minus(x0, x0)
eq(s(x0), s(x1))
eq(0, s(x0))
eq(s(x0), 0)
eq(x0, x0)
times(x0, x1)
timesIter(x0, x1, x2)
ifTimes(true, x0, x1, x2, x3)
ifTimes(false, x0, x1, x2, x3)
f

We have to consider all minimal (P,Q,R)-chains.

(10) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(11) TRUE

(12) Obligation:

Q DP problem:
The TRS P consists of the following rules:

MINUS(s(x), s(y)) → MINUS(x, y)

The TRS R consists of the following rules:

inc(s(x)) → s(inc(x))
inc(0) → s(0)
plus(x, y) → ifPlus(eq(x, 0), minus(x, s(0)), x, inc(x))
ifPlus(false, x, y, z) → plus(x, z)
ifPlus(true, x, y, z) → y
minus(s(x), s(y)) → minus(x, y)
minus(0, x) → 0
minus(x, 0) → x
minus(x, x) → 0
eq(s(x), s(y)) → eq(x, y)
eq(0, s(x)) → false
eq(s(x), 0) → false
eq(0, 0) → true
eq(x, x) → true
times(x, y) → timesIter(x, y, 0)
timesIter(x, y, z) → ifTimes(eq(x, 0), minus(x, s(0)), y, z, plus(y, z))
ifTimes(true, x, y, z, u) → z
ifTimes(false, x, y, z, u) → timesIter(x, y, u)
fg
fh

The set Q consists of the following terms:

inc(s(x0))
inc(0)
plus(x0, x1)
ifPlus(false, x0, x1, x2)
ifPlus(true, x0, x1, x2)
minus(s(x0), s(x1))
minus(0, x0)
minus(x0, 0)
minus(x0, x0)
eq(s(x0), s(x1))
eq(0, s(x0))
eq(s(x0), 0)
eq(x0, x0)
times(x0, x1)
timesIter(x0, x1, x2)
ifTimes(true, x0, x1, x2, x3)
ifTimes(false, x0, x1, x2, x3)
f

We have to consider all minimal (P,Q,R)-chains.

(13) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


MINUS(s(x), s(y)) → MINUS(x, y)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
MINUS(x1, x2)  =  MINUS(x2)
s(x1)  =  s(x1)

Recursive path order with status [RPO].
Quasi-Precedence:
[MINUS1, s1]

Status:
s1: [1]
MINUS1: multiset


The following usable rules [FROCOS05] were oriented: none

(14) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

inc(s(x)) → s(inc(x))
inc(0) → s(0)
plus(x, y) → ifPlus(eq(x, 0), minus(x, s(0)), x, inc(x))
ifPlus(false, x, y, z) → plus(x, z)
ifPlus(true, x, y, z) → y
minus(s(x), s(y)) → minus(x, y)
minus(0, x) → 0
minus(x, 0) → x
minus(x, x) → 0
eq(s(x), s(y)) → eq(x, y)
eq(0, s(x)) → false
eq(s(x), 0) → false
eq(0, 0) → true
eq(x, x) → true
times(x, y) → timesIter(x, y, 0)
timesIter(x, y, z) → ifTimes(eq(x, 0), minus(x, s(0)), y, z, plus(y, z))
ifTimes(true, x, y, z, u) → z
ifTimes(false, x, y, z, u) → timesIter(x, y, u)
fg
fh

The set Q consists of the following terms:

inc(s(x0))
inc(0)
plus(x0, x1)
ifPlus(false, x0, x1, x2)
ifPlus(true, x0, x1, x2)
minus(s(x0), s(x1))
minus(0, x0)
minus(x0, 0)
minus(x0, x0)
eq(s(x0), s(x1))
eq(0, s(x0))
eq(s(x0), 0)
eq(x0, x0)
times(x0, x1)
timesIter(x0, x1, x2)
ifTimes(true, x0, x1, x2, x3)
ifTimes(false, x0, x1, x2, x3)
f

We have to consider all minimal (P,Q,R)-chains.

(15) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(16) TRUE

(17) Obligation:

Q DP problem:
The TRS P consists of the following rules:

INC(s(x)) → INC(x)

The TRS R consists of the following rules:

inc(s(x)) → s(inc(x))
inc(0) → s(0)
plus(x, y) → ifPlus(eq(x, 0), minus(x, s(0)), x, inc(x))
ifPlus(false, x, y, z) → plus(x, z)
ifPlus(true, x, y, z) → y
minus(s(x), s(y)) → minus(x, y)
minus(0, x) → 0
minus(x, 0) → x
minus(x, x) → 0
eq(s(x), s(y)) → eq(x, y)
eq(0, s(x)) → false
eq(s(x), 0) → false
eq(0, 0) → true
eq(x, x) → true
times(x, y) → timesIter(x, y, 0)
timesIter(x, y, z) → ifTimes(eq(x, 0), minus(x, s(0)), y, z, plus(y, z))
ifTimes(true, x, y, z, u) → z
ifTimes(false, x, y, z, u) → timesIter(x, y, u)
fg
fh

The set Q consists of the following terms:

inc(s(x0))
inc(0)
plus(x0, x1)
ifPlus(false, x0, x1, x2)
ifPlus(true, x0, x1, x2)
minus(s(x0), s(x1))
minus(0, x0)
minus(x0, 0)
minus(x0, x0)
eq(s(x0), s(x1))
eq(0, s(x0))
eq(s(x0), 0)
eq(x0, x0)
times(x0, x1)
timesIter(x0, x1, x2)
ifTimes(true, x0, x1, x2, x3)
ifTimes(false, x0, x1, x2, x3)
f

We have to consider all minimal (P,Q,R)-chains.

(18) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


INC(s(x)) → INC(x)
The remaining pairs can at least be oriented weakly.
Used ordering: Recursive path order with status [RPO].
Quasi-Precedence:
s1 > INC1

Status:
INC1: multiset
s1: multiset


The following usable rules [FROCOS05] were oriented: none

(19) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

inc(s(x)) → s(inc(x))
inc(0) → s(0)
plus(x, y) → ifPlus(eq(x, 0), minus(x, s(0)), x, inc(x))
ifPlus(false, x, y, z) → plus(x, z)
ifPlus(true, x, y, z) → y
minus(s(x), s(y)) → minus(x, y)
minus(0, x) → 0
minus(x, 0) → x
minus(x, x) → 0
eq(s(x), s(y)) → eq(x, y)
eq(0, s(x)) → false
eq(s(x), 0) → false
eq(0, 0) → true
eq(x, x) → true
times(x, y) → timesIter(x, y, 0)
timesIter(x, y, z) → ifTimes(eq(x, 0), minus(x, s(0)), y, z, plus(y, z))
ifTimes(true, x, y, z, u) → z
ifTimes(false, x, y, z, u) → timesIter(x, y, u)
fg
fh

The set Q consists of the following terms:

inc(s(x0))
inc(0)
plus(x0, x1)
ifPlus(false, x0, x1, x2)
ifPlus(true, x0, x1, x2)
minus(s(x0), s(x1))
minus(0, x0)
minus(x0, 0)
minus(x0, x0)
eq(s(x0), s(x1))
eq(0, s(x0))
eq(s(x0), 0)
eq(x0, x0)
times(x0, x1)
timesIter(x0, x1, x2)
ifTimes(true, x0, x1, x2, x3)
ifTimes(false, x0, x1, x2, x3)
f

We have to consider all minimal (P,Q,R)-chains.

(20) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(21) TRUE

(22) Obligation:

Q DP problem:
The TRS P consists of the following rules:

PLUS(x, y) → IFPLUS(eq(x, 0), minus(x, s(0)), x, inc(x))
IFPLUS(false, x, y, z) → PLUS(x, z)

The TRS R consists of the following rules:

inc(s(x)) → s(inc(x))
inc(0) → s(0)
plus(x, y) → ifPlus(eq(x, 0), minus(x, s(0)), x, inc(x))
ifPlus(false, x, y, z) → plus(x, z)
ifPlus(true, x, y, z) → y
minus(s(x), s(y)) → minus(x, y)
minus(0, x) → 0
minus(x, 0) → x
minus(x, x) → 0
eq(s(x), s(y)) → eq(x, y)
eq(0, s(x)) → false
eq(s(x), 0) → false
eq(0, 0) → true
eq(x, x) → true
times(x, y) → timesIter(x, y, 0)
timesIter(x, y, z) → ifTimes(eq(x, 0), minus(x, s(0)), y, z, plus(y, z))
ifTimes(true, x, y, z, u) → z
ifTimes(false, x, y, z, u) → timesIter(x, y, u)
fg
fh

The set Q consists of the following terms:

inc(s(x0))
inc(0)
plus(x0, x1)
ifPlus(false, x0, x1, x2)
ifPlus(true, x0, x1, x2)
minus(s(x0), s(x1))
minus(0, x0)
minus(x0, 0)
minus(x0, x0)
eq(s(x0), s(x1))
eq(0, s(x0))
eq(s(x0), 0)
eq(x0, x0)
times(x0, x1)
timesIter(x0, x1, x2)
ifTimes(true, x0, x1, x2, x3)
ifTimes(false, x0, x1, x2, x3)
f

We have to consider all minimal (P,Q,R)-chains.

(23) Obligation:

Q DP problem:
The TRS P consists of the following rules:

TIMESITER(x, y, z) → IFTIMES(eq(x, 0), minus(x, s(0)), y, z, plus(y, z))
IFTIMES(false, x, y, z, u) → TIMESITER(x, y, u)

The TRS R consists of the following rules:

inc(s(x)) → s(inc(x))
inc(0) → s(0)
plus(x, y) → ifPlus(eq(x, 0), minus(x, s(0)), x, inc(x))
ifPlus(false, x, y, z) → plus(x, z)
ifPlus(true, x, y, z) → y
minus(s(x), s(y)) → minus(x, y)
minus(0, x) → 0
minus(x, 0) → x
minus(x, x) → 0
eq(s(x), s(y)) → eq(x, y)
eq(0, s(x)) → false
eq(s(x), 0) → false
eq(0, 0) → true
eq(x, x) → true
times(x, y) → timesIter(x, y, 0)
timesIter(x, y, z) → ifTimes(eq(x, 0), minus(x, s(0)), y, z, plus(y, z))
ifTimes(true, x, y, z, u) → z
ifTimes(false, x, y, z, u) → timesIter(x, y, u)
fg
fh

The set Q consists of the following terms:

inc(s(x0))
inc(0)
plus(x0, x1)
ifPlus(false, x0, x1, x2)
ifPlus(true, x0, x1, x2)
minus(s(x0), s(x1))
minus(0, x0)
minus(x0, 0)
minus(x0, x0)
eq(s(x0), s(x1))
eq(0, s(x0))
eq(s(x0), 0)
eq(x0, x0)
times(x0, x1)
timesIter(x0, x1, x2)
ifTimes(true, x0, x1, x2, x3)
ifTimes(false, x0, x1, x2, x3)
f

We have to consider all minimal (P,Q,R)-chains.