0 QTRS
↳1 Overlay + Local Confluence (⇔)
↳2 QTRS
↳3 DependencyPairsProof (⇔)
↳4 QDP
↳5 DependencyGraphProof (⇔)
↳6 AND
↳7 QDP
↳8 QDPOrderProof (⇔)
↳9 QDP
↳10 PisEmptyProof (⇔)
↳11 TRUE
↳12 QDP
↳13 QDPOrderProof (⇔)
↳14 QDP
↳15 PisEmptyProof (⇔)
↳16 TRUE
↳17 QDP
↳18 QDPOrderProof (⇔)
↳19 QDP
↳20 PisEmptyProof (⇔)
↳21 TRUE
↳22 QDP
division(x, y) → div(x, y, 0)
div(x, y, z) → if(lt(x, y), x, y, inc(z))
if(true, x, y, z) → z
if(false, x, s(y), z) → div(minus(x, s(y)), s(y), z)
minus(x, 0) → x
minus(s(x), s(y)) → minus(x, y)
lt(x, 0) → false
lt(0, s(y)) → true
lt(s(x), s(y)) → lt(x, y)
inc(0) → s(0)
inc(s(x)) → s(inc(x))
division(x, y) → div(x, y, 0)
div(x, y, z) → if(lt(x, y), x, y, inc(z))
if(true, x, y, z) → z
if(false, x, s(y), z) → div(minus(x, s(y)), s(y), z)
minus(x, 0) → x
minus(s(x), s(y)) → minus(x, y)
lt(x, 0) → false
lt(0, s(y)) → true
lt(s(x), s(y)) → lt(x, y)
inc(0) → s(0)
inc(s(x)) → s(inc(x))
division(x0, x1)
div(x0, x1, x2)
if(true, x0, x1, x2)
if(false, x0, s(x1), x2)
minus(x0, 0)
minus(s(x0), s(x1))
lt(x0, 0)
lt(0, s(x0))
lt(s(x0), s(x1))
inc(0)
inc(s(x0))
DIVISION(x, y) → DIV(x, y, 0)
DIV(x, y, z) → IF(lt(x, y), x, y, inc(z))
DIV(x, y, z) → LT(x, y)
DIV(x, y, z) → INC(z)
IF(false, x, s(y), z) → DIV(minus(x, s(y)), s(y), z)
IF(false, x, s(y), z) → MINUS(x, s(y))
MINUS(s(x), s(y)) → MINUS(x, y)
LT(s(x), s(y)) → LT(x, y)
INC(s(x)) → INC(x)
division(x, y) → div(x, y, 0)
div(x, y, z) → if(lt(x, y), x, y, inc(z))
if(true, x, y, z) → z
if(false, x, s(y), z) → div(minus(x, s(y)), s(y), z)
minus(x, 0) → x
minus(s(x), s(y)) → minus(x, y)
lt(x, 0) → false
lt(0, s(y)) → true
lt(s(x), s(y)) → lt(x, y)
inc(0) → s(0)
inc(s(x)) → s(inc(x))
division(x0, x1)
div(x0, x1, x2)
if(true, x0, x1, x2)
if(false, x0, s(x1), x2)
minus(x0, 0)
minus(s(x0), s(x1))
lt(x0, 0)
lt(0, s(x0))
lt(s(x0), s(x1))
inc(0)
inc(s(x0))
INC(s(x)) → INC(x)
division(x, y) → div(x, y, 0)
div(x, y, z) → if(lt(x, y), x, y, inc(z))
if(true, x, y, z) → z
if(false, x, s(y), z) → div(minus(x, s(y)), s(y), z)
minus(x, 0) → x
minus(s(x), s(y)) → minus(x, y)
lt(x, 0) → false
lt(0, s(y)) → true
lt(s(x), s(y)) → lt(x, y)
inc(0) → s(0)
inc(s(x)) → s(inc(x))
division(x0, x1)
div(x0, x1, x2)
if(true, x0, x1, x2)
if(false, x0, s(x1), x2)
minus(x0, 0)
minus(s(x0), s(x1))
lt(x0, 0)
lt(0, s(x0))
lt(s(x0), s(x1))
inc(0)
inc(s(x0))
The following pairs can be oriented strictly and are deleted.
The remaining pairs can at least be oriented weakly.
INC(s(x)) → INC(x)
s1 > INC1
INC1: multiset
s1: multiset
division(x, y) → div(x, y, 0)
div(x, y, z) → if(lt(x, y), x, y, inc(z))
if(true, x, y, z) → z
if(false, x, s(y), z) → div(minus(x, s(y)), s(y), z)
minus(x, 0) → x
minus(s(x), s(y)) → minus(x, y)
lt(x, 0) → false
lt(0, s(y)) → true
lt(s(x), s(y)) → lt(x, y)
inc(0) → s(0)
inc(s(x)) → s(inc(x))
division(x0, x1)
div(x0, x1, x2)
if(true, x0, x1, x2)
if(false, x0, s(x1), x2)
minus(x0, 0)
minus(s(x0), s(x1))
lt(x0, 0)
lt(0, s(x0))
lt(s(x0), s(x1))
inc(0)
inc(s(x0))
LT(s(x), s(y)) → LT(x, y)
division(x, y) → div(x, y, 0)
div(x, y, z) → if(lt(x, y), x, y, inc(z))
if(true, x, y, z) → z
if(false, x, s(y), z) → div(minus(x, s(y)), s(y), z)
minus(x, 0) → x
minus(s(x), s(y)) → minus(x, y)
lt(x, 0) → false
lt(0, s(y)) → true
lt(s(x), s(y)) → lt(x, y)
inc(0) → s(0)
inc(s(x)) → s(inc(x))
division(x0, x1)
div(x0, x1, x2)
if(true, x0, x1, x2)
if(false, x0, s(x1), x2)
minus(x0, 0)
minus(s(x0), s(x1))
lt(x0, 0)
lt(0, s(x0))
lt(s(x0), s(x1))
inc(0)
inc(s(x0))
The following pairs can be oriented strictly and are deleted.
The remaining pairs can at least be oriented weakly.
LT(s(x), s(y)) → LT(x, y)
trivial
s1: multiset
division(x, y) → div(x, y, 0)
div(x, y, z) → if(lt(x, y), x, y, inc(z))
if(true, x, y, z) → z
if(false, x, s(y), z) → div(minus(x, s(y)), s(y), z)
minus(x, 0) → x
minus(s(x), s(y)) → minus(x, y)
lt(x, 0) → false
lt(0, s(y)) → true
lt(s(x), s(y)) → lt(x, y)
inc(0) → s(0)
inc(s(x)) → s(inc(x))
division(x0, x1)
div(x0, x1, x2)
if(true, x0, x1, x2)
if(false, x0, s(x1), x2)
minus(x0, 0)
minus(s(x0), s(x1))
lt(x0, 0)
lt(0, s(x0))
lt(s(x0), s(x1))
inc(0)
inc(s(x0))
MINUS(s(x), s(y)) → MINUS(x, y)
division(x, y) → div(x, y, 0)
div(x, y, z) → if(lt(x, y), x, y, inc(z))
if(true, x, y, z) → z
if(false, x, s(y), z) → div(minus(x, s(y)), s(y), z)
minus(x, 0) → x
minus(s(x), s(y)) → minus(x, y)
lt(x, 0) → false
lt(0, s(y)) → true
lt(s(x), s(y)) → lt(x, y)
inc(0) → s(0)
inc(s(x)) → s(inc(x))
division(x0, x1)
div(x0, x1, x2)
if(true, x0, x1, x2)
if(false, x0, s(x1), x2)
minus(x0, 0)
minus(s(x0), s(x1))
lt(x0, 0)
lt(0, s(x0))
lt(s(x0), s(x1))
inc(0)
inc(s(x0))
The following pairs can be oriented strictly and are deleted.
The remaining pairs can at least be oriented weakly.
MINUS(s(x), s(y)) → MINUS(x, y)
trivial
s1: multiset
division(x, y) → div(x, y, 0)
div(x, y, z) → if(lt(x, y), x, y, inc(z))
if(true, x, y, z) → z
if(false, x, s(y), z) → div(minus(x, s(y)), s(y), z)
minus(x, 0) → x
minus(s(x), s(y)) → minus(x, y)
lt(x, 0) → false
lt(0, s(y)) → true
lt(s(x), s(y)) → lt(x, y)
inc(0) → s(0)
inc(s(x)) → s(inc(x))
division(x0, x1)
div(x0, x1, x2)
if(true, x0, x1, x2)
if(false, x0, s(x1), x2)
minus(x0, 0)
minus(s(x0), s(x1))
lt(x0, 0)
lt(0, s(x0))
lt(s(x0), s(x1))
inc(0)
inc(s(x0))
IF(false, x, s(y), z) → DIV(minus(x, s(y)), s(y), z)
DIV(x, y, z) → IF(lt(x, y), x, y, inc(z))
division(x, y) → div(x, y, 0)
div(x, y, z) → if(lt(x, y), x, y, inc(z))
if(true, x, y, z) → z
if(false, x, s(y), z) → div(minus(x, s(y)), s(y), z)
minus(x, 0) → x
minus(s(x), s(y)) → minus(x, y)
lt(x, 0) → false
lt(0, s(y)) → true
lt(s(x), s(y)) → lt(x, y)
inc(0) → s(0)
inc(s(x)) → s(inc(x))
division(x0, x1)
div(x0, x1, x2)
if(true, x0, x1, x2)
if(false, x0, s(x1), x2)
minus(x0, 0)
minus(s(x0), s(x1))
lt(x0, 0)
lt(0, s(x0))
lt(s(x0), s(x1))
inc(0)
inc(s(x0))