(0) Obligation:

Q restricted rewrite system:
The TRS R consists of the following rules:

division(x, y) → div(x, y, 0)
div(x, y, z) → if(lt(x, y), x, y, inc(z))
if(true, x, y, z) → z
if(false, x, s(y), z) → div(minus(x, s(y)), s(y), z)
minus(x, 0) → x
minus(s(x), s(y)) → minus(x, y)
lt(x, 0) → false
lt(0, s(y)) → true
lt(s(x), s(y)) → lt(x, y)
inc(0) → s(0)
inc(s(x)) → s(inc(x))

Q is empty.

(1) Overlay + Local Confluence (EQUIVALENT transformation)

The TRS is overlay and locally confluent. By [NOC] we can switch to innermost.

(2) Obligation:

Q restricted rewrite system:
The TRS R consists of the following rules:

division(x, y) → div(x, y, 0)
div(x, y, z) → if(lt(x, y), x, y, inc(z))
if(true, x, y, z) → z
if(false, x, s(y), z) → div(minus(x, s(y)), s(y), z)
minus(x, 0) → x
minus(s(x), s(y)) → minus(x, y)
lt(x, 0) → false
lt(0, s(y)) → true
lt(s(x), s(y)) → lt(x, y)
inc(0) → s(0)
inc(s(x)) → s(inc(x))

The set Q consists of the following terms:

division(x0, x1)
div(x0, x1, x2)
if(true, x0, x1, x2)
if(false, x0, s(x1), x2)
minus(x0, 0)
minus(s(x0), s(x1))
lt(x0, 0)
lt(0, s(x0))
lt(s(x0), s(x1))
inc(0)
inc(s(x0))

(3) DependencyPairsProof (EQUIVALENT transformation)

Using Dependency Pairs [AG00,LPAR04] we result in the following initial DP problem.

(4) Obligation:

Q DP problem:
The TRS P consists of the following rules:

DIVISION(x, y) → DIV(x, y, 0)
DIV(x, y, z) → IF(lt(x, y), x, y, inc(z))
DIV(x, y, z) → LT(x, y)
DIV(x, y, z) → INC(z)
IF(false, x, s(y), z) → DIV(minus(x, s(y)), s(y), z)
IF(false, x, s(y), z) → MINUS(x, s(y))
MINUS(s(x), s(y)) → MINUS(x, y)
LT(s(x), s(y)) → LT(x, y)
INC(s(x)) → INC(x)

The TRS R consists of the following rules:

division(x, y) → div(x, y, 0)
div(x, y, z) → if(lt(x, y), x, y, inc(z))
if(true, x, y, z) → z
if(false, x, s(y), z) → div(minus(x, s(y)), s(y), z)
minus(x, 0) → x
minus(s(x), s(y)) → minus(x, y)
lt(x, 0) → false
lt(0, s(y)) → true
lt(s(x), s(y)) → lt(x, y)
inc(0) → s(0)
inc(s(x)) → s(inc(x))

The set Q consists of the following terms:

division(x0, x1)
div(x0, x1, x2)
if(true, x0, x1, x2)
if(false, x0, s(x1), x2)
minus(x0, 0)
minus(s(x0), s(x1))
lt(x0, 0)
lt(0, s(x0))
lt(s(x0), s(x1))
inc(0)
inc(s(x0))

We have to consider all minimal (P,Q,R)-chains.

(5) DependencyGraphProof (EQUIVALENT transformation)

The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 4 SCCs with 4 less nodes.

(6) Complex Obligation (AND)

(7) Obligation:

Q DP problem:
The TRS P consists of the following rules:

INC(s(x)) → INC(x)

The TRS R consists of the following rules:

division(x, y) → div(x, y, 0)
div(x, y, z) → if(lt(x, y), x, y, inc(z))
if(true, x, y, z) → z
if(false, x, s(y), z) → div(minus(x, s(y)), s(y), z)
minus(x, 0) → x
minus(s(x), s(y)) → minus(x, y)
lt(x, 0) → false
lt(0, s(y)) → true
lt(s(x), s(y)) → lt(x, y)
inc(0) → s(0)
inc(s(x)) → s(inc(x))

The set Q consists of the following terms:

division(x0, x1)
div(x0, x1, x2)
if(true, x0, x1, x2)
if(false, x0, s(x1), x2)
minus(x0, 0)
minus(s(x0), s(x1))
lt(x0, 0)
lt(0, s(x0))
lt(s(x0), s(x1))
inc(0)
inc(s(x0))

We have to consider all minimal (P,Q,R)-chains.

(8) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


INC(s(x)) → INC(x)
The remaining pairs can at least be oriented weakly.
Used ordering: Recursive path order with status [RPO].
Quasi-Precedence:
s1 > INC1

Status:
INC1: multiset
s1: multiset


The following usable rules [FROCOS05] were oriented: none

(9) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

division(x, y) → div(x, y, 0)
div(x, y, z) → if(lt(x, y), x, y, inc(z))
if(true, x, y, z) → z
if(false, x, s(y), z) → div(minus(x, s(y)), s(y), z)
minus(x, 0) → x
minus(s(x), s(y)) → minus(x, y)
lt(x, 0) → false
lt(0, s(y)) → true
lt(s(x), s(y)) → lt(x, y)
inc(0) → s(0)
inc(s(x)) → s(inc(x))

The set Q consists of the following terms:

division(x0, x1)
div(x0, x1, x2)
if(true, x0, x1, x2)
if(false, x0, s(x1), x2)
minus(x0, 0)
minus(s(x0), s(x1))
lt(x0, 0)
lt(0, s(x0))
lt(s(x0), s(x1))
inc(0)
inc(s(x0))

We have to consider all minimal (P,Q,R)-chains.

(10) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(11) TRUE

(12) Obligation:

Q DP problem:
The TRS P consists of the following rules:

LT(s(x), s(y)) → LT(x, y)

The TRS R consists of the following rules:

division(x, y) → div(x, y, 0)
div(x, y, z) → if(lt(x, y), x, y, inc(z))
if(true, x, y, z) → z
if(false, x, s(y), z) → div(minus(x, s(y)), s(y), z)
minus(x, 0) → x
minus(s(x), s(y)) → minus(x, y)
lt(x, 0) → false
lt(0, s(y)) → true
lt(s(x), s(y)) → lt(x, y)
inc(0) → s(0)
inc(s(x)) → s(inc(x))

The set Q consists of the following terms:

division(x0, x1)
div(x0, x1, x2)
if(true, x0, x1, x2)
if(false, x0, s(x1), x2)
minus(x0, 0)
minus(s(x0), s(x1))
lt(x0, 0)
lt(0, s(x0))
lt(s(x0), s(x1))
inc(0)
inc(s(x0))

We have to consider all minimal (P,Q,R)-chains.

(13) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


LT(s(x), s(y)) → LT(x, y)
The remaining pairs can at least be oriented weakly.
Used ordering: Recursive path order with status [RPO].
Quasi-Precedence:
[LT2, s1]

Status:
s1: [1]
LT2: [1,2]


The following usable rules [FROCOS05] were oriented: none

(14) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

division(x, y) → div(x, y, 0)
div(x, y, z) → if(lt(x, y), x, y, inc(z))
if(true, x, y, z) → z
if(false, x, s(y), z) → div(minus(x, s(y)), s(y), z)
minus(x, 0) → x
minus(s(x), s(y)) → minus(x, y)
lt(x, 0) → false
lt(0, s(y)) → true
lt(s(x), s(y)) → lt(x, y)
inc(0) → s(0)
inc(s(x)) → s(inc(x))

The set Q consists of the following terms:

division(x0, x1)
div(x0, x1, x2)
if(true, x0, x1, x2)
if(false, x0, s(x1), x2)
minus(x0, 0)
minus(s(x0), s(x1))
lt(x0, 0)
lt(0, s(x0))
lt(s(x0), s(x1))
inc(0)
inc(s(x0))

We have to consider all minimal (P,Q,R)-chains.

(15) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(16) TRUE

(17) Obligation:

Q DP problem:
The TRS P consists of the following rules:

MINUS(s(x), s(y)) → MINUS(x, y)

The TRS R consists of the following rules:

division(x, y) → div(x, y, 0)
div(x, y, z) → if(lt(x, y), x, y, inc(z))
if(true, x, y, z) → z
if(false, x, s(y), z) → div(minus(x, s(y)), s(y), z)
minus(x, 0) → x
minus(s(x), s(y)) → minus(x, y)
lt(x, 0) → false
lt(0, s(y)) → true
lt(s(x), s(y)) → lt(x, y)
inc(0) → s(0)
inc(s(x)) → s(inc(x))

The set Q consists of the following terms:

division(x0, x1)
div(x0, x1, x2)
if(true, x0, x1, x2)
if(false, x0, s(x1), x2)
minus(x0, 0)
minus(s(x0), s(x1))
lt(x0, 0)
lt(0, s(x0))
lt(s(x0), s(x1))
inc(0)
inc(s(x0))

We have to consider all minimal (P,Q,R)-chains.

(18) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


MINUS(s(x), s(y)) → MINUS(x, y)
The remaining pairs can at least be oriented weakly.
Used ordering: Recursive path order with status [RPO].
Quasi-Precedence:
[MINUS2, s1]

Status:
MINUS2: [1,2]
s1: [1]


The following usable rules [FROCOS05] were oriented: none

(19) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

division(x, y) → div(x, y, 0)
div(x, y, z) → if(lt(x, y), x, y, inc(z))
if(true, x, y, z) → z
if(false, x, s(y), z) → div(minus(x, s(y)), s(y), z)
minus(x, 0) → x
minus(s(x), s(y)) → minus(x, y)
lt(x, 0) → false
lt(0, s(y)) → true
lt(s(x), s(y)) → lt(x, y)
inc(0) → s(0)
inc(s(x)) → s(inc(x))

The set Q consists of the following terms:

division(x0, x1)
div(x0, x1, x2)
if(true, x0, x1, x2)
if(false, x0, s(x1), x2)
minus(x0, 0)
minus(s(x0), s(x1))
lt(x0, 0)
lt(0, s(x0))
lt(s(x0), s(x1))
inc(0)
inc(s(x0))

We have to consider all minimal (P,Q,R)-chains.

(20) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(21) TRUE

(22) Obligation:

Q DP problem:
The TRS P consists of the following rules:

IF(false, x, s(y), z) → DIV(minus(x, s(y)), s(y), z)
DIV(x, y, z) → IF(lt(x, y), x, y, inc(z))

The TRS R consists of the following rules:

division(x, y) → div(x, y, 0)
div(x, y, z) → if(lt(x, y), x, y, inc(z))
if(true, x, y, z) → z
if(false, x, s(y), z) → div(minus(x, s(y)), s(y), z)
minus(x, 0) → x
minus(s(x), s(y)) → minus(x, y)
lt(x, 0) → false
lt(0, s(y)) → true
lt(s(x), s(y)) → lt(x, y)
inc(0) → s(0)
inc(s(x)) → s(inc(x))

The set Q consists of the following terms:

division(x0, x1)
div(x0, x1, x2)
if(true, x0, x1, x2)
if(false, x0, s(x1), x2)
minus(x0, 0)
minus(s(x0), s(x1))
lt(x0, 0)
lt(0, s(x0))
lt(s(x0), s(x1))
inc(0)
inc(s(x0))

We have to consider all minimal (P,Q,R)-chains.