0 QTRS
↳1 Overlay + Local Confluence (⇔)
↳2 QTRS
↳3 DependencyPairsProof (⇔)
↳4 QDP
↳5 DependencyGraphProof (⇔)
↳6 AND
↳7 QDP
↳8 QDPOrderProof (⇔)
↳9 QDP
↳10 PisEmptyProof (⇔)
↳11 TRUE
↳12 QDP
↳13 QDPOrderProof (⇔)
↳14 QDP
↳15 PisEmptyProof (⇔)
↳16 TRUE
↳17 QDP
minus(x, x) → 0
minus(s(x), s(y)) → minus(x, y)
minus(0, x) → 0
minus(x, 0) → x
div(s(x), s(y)) → s(div(minus(x, y), s(y)))
div(0, s(y)) → 0
f(x, 0, b) → x
f(x, s(y), b) → div(f(x, minus(s(y), s(0)), b), b)
minus(x, x) → 0
minus(s(x), s(y)) → minus(x, y)
minus(0, x) → 0
minus(x, 0) → x
div(s(x), s(y)) → s(div(minus(x, y), s(y)))
div(0, s(y)) → 0
f(x, 0, b) → x
f(x, s(y), b) → div(f(x, minus(s(y), s(0)), b), b)
minus(x0, x0)
minus(s(x0), s(x1))
minus(0, x0)
minus(x0, 0)
div(s(x0), s(x1))
div(0, s(x0))
f(x0, 0, x1)
f(x0, s(x1), x2)
MINUS(s(x), s(y)) → MINUS(x, y)
DIV(s(x), s(y)) → DIV(minus(x, y), s(y))
DIV(s(x), s(y)) → MINUS(x, y)
F(x, s(y), b) → DIV(f(x, minus(s(y), s(0)), b), b)
F(x, s(y), b) → F(x, minus(s(y), s(0)), b)
F(x, s(y), b) → MINUS(s(y), s(0))
minus(x, x) → 0
minus(s(x), s(y)) → minus(x, y)
minus(0, x) → 0
minus(x, 0) → x
div(s(x), s(y)) → s(div(minus(x, y), s(y)))
div(0, s(y)) → 0
f(x, 0, b) → x
f(x, s(y), b) → div(f(x, minus(s(y), s(0)), b), b)
minus(x0, x0)
minus(s(x0), s(x1))
minus(0, x0)
minus(x0, 0)
div(s(x0), s(x1))
div(0, s(x0))
f(x0, 0, x1)
f(x0, s(x1), x2)
MINUS(s(x), s(y)) → MINUS(x, y)
minus(x, x) → 0
minus(s(x), s(y)) → minus(x, y)
minus(0, x) → 0
minus(x, 0) → x
div(s(x), s(y)) → s(div(minus(x, y), s(y)))
div(0, s(y)) → 0
f(x, 0, b) → x
f(x, s(y), b) → div(f(x, minus(s(y), s(0)), b), b)
minus(x0, x0)
minus(s(x0), s(x1))
minus(0, x0)
minus(x0, 0)
div(s(x0), s(x1))
div(0, s(x0))
f(x0, 0, x1)
f(x0, s(x1), x2)
The following pairs can be oriented strictly and are deleted.
The remaining pairs can at least be oriented weakly.
MINUS(s(x), s(y)) → MINUS(x, y)
s1 > MINUS1
minus(x, x) → 0
minus(s(x), s(y)) → minus(x, y)
minus(0, x) → 0
minus(x, 0) → x
div(s(x), s(y)) → s(div(minus(x, y), s(y)))
div(0, s(y)) → 0
f(x, 0, b) → x
f(x, s(y), b) → div(f(x, minus(s(y), s(0)), b), b)
minus(x0, x0)
minus(s(x0), s(x1))
minus(0, x0)
minus(x0, 0)
div(s(x0), s(x1))
div(0, s(x0))
f(x0, 0, x1)
f(x0, s(x1), x2)
DIV(s(x), s(y)) → DIV(minus(x, y), s(y))
minus(x, x) → 0
minus(s(x), s(y)) → minus(x, y)
minus(0, x) → 0
minus(x, 0) → x
div(s(x), s(y)) → s(div(minus(x, y), s(y)))
div(0, s(y)) → 0
f(x, 0, b) → x
f(x, s(y), b) → div(f(x, minus(s(y), s(0)), b), b)
minus(x0, x0)
minus(s(x0), s(x1))
minus(0, x0)
minus(x0, 0)
div(s(x0), s(x1))
div(0, s(x0))
f(x0, 0, x1)
f(x0, s(x1), x2)
The following pairs can be oriented strictly and are deleted.
The remaining pairs can at least be oriented weakly.
DIV(s(x), s(y)) → DIV(minus(x, y), s(y))
DIV2 > 0
s1 > 0
minus(x, x) → 0
minus(s(x), s(y)) → minus(x, y)
minus(0, x) → 0
minus(x, 0) → x
minus(x, x) → 0
minus(s(x), s(y)) → minus(x, y)
minus(0, x) → 0
minus(x, 0) → x
div(s(x), s(y)) → s(div(minus(x, y), s(y)))
div(0, s(y)) → 0
f(x, 0, b) → x
f(x, s(y), b) → div(f(x, minus(s(y), s(0)), b), b)
minus(x0, x0)
minus(s(x0), s(x1))
minus(0, x0)
minus(x0, 0)
div(s(x0), s(x1))
div(0, s(x0))
f(x0, 0, x1)
f(x0, s(x1), x2)
F(x, s(y), b) → F(x, minus(s(y), s(0)), b)
minus(x, x) → 0
minus(s(x), s(y)) → minus(x, y)
minus(0, x) → 0
minus(x, 0) → x
div(s(x), s(y)) → s(div(minus(x, y), s(y)))
div(0, s(y)) → 0
f(x, 0, b) → x
f(x, s(y), b) → div(f(x, minus(s(y), s(0)), b), b)
minus(x0, x0)
minus(s(x0), s(x1))
minus(0, x0)
minus(x0, 0)
div(s(x0), s(x1))
div(0, s(x0))
f(x0, 0, x1)
f(x0, s(x1), x2)