(0) Obligation:

Q restricted rewrite system:
The TRS R consists of the following rules:

f(s(a), s(b), x) → f(x, x, x)
g(f(s(x), s(y), z)) → g(f(x, y, z))
cons(x, y) → x
cons(x, y) → y

Q is empty.

(1) DependencyPairsProof (EQUIVALENT transformation)

Using Dependency Pairs [AG00,LPAR04] we result in the following initial DP problem.

(2) Obligation:

Q DP problem:
The TRS P consists of the following rules:

F(s(a), s(b), x) → F(x, x, x)
G(f(s(x), s(y), z)) → G(f(x, y, z))
G(f(s(x), s(y), z)) → F(x, y, z)

The TRS R consists of the following rules:

f(s(a), s(b), x) → f(x, x, x)
g(f(s(x), s(y), z)) → g(f(x, y, z))
cons(x, y) → x
cons(x, y) → y

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(3) DependencyGraphProof (EQUIVALENT transformation)

The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 2 SCCs with 1 less node.

(4) Complex Obligation (AND)

(5) Obligation:

Q DP problem:
The TRS P consists of the following rules:

F(s(a), s(b), x) → F(x, x, x)

The TRS R consists of the following rules:

f(s(a), s(b), x) → f(x, x, x)
g(f(s(x), s(y), z)) → g(f(x, y, z))
cons(x, y) → x
cons(x, y) → y

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(6) Obligation:

Q DP problem:
The TRS P consists of the following rules:

G(f(s(x), s(y), z)) → G(f(x, y, z))

The TRS R consists of the following rules:

f(s(a), s(b), x) → f(x, x, x)
g(f(s(x), s(y), z)) → g(f(x, y, z))
cons(x, y) → x
cons(x, y) → y

Q is empty.
We have to consider all minimal (P,Q,R)-chains.