0 QTRS
↳1 AAECC Innermost (⇔)
↳2 QTRS
↳3 DependencyPairsProof (⇔)
↳4 QDP
↳5 DependencyGraphProof (⇔)
↳6 AND
↳7 QDP
↳8 QDPOrderProof (⇔)
↳9 QDP
↳10 PisEmptyProof (⇔)
↳11 TRUE
↳12 QDP
-(x, 0) → x
-(s(x), s(y)) → -(x, y)
p(s(x)) → x
f(s(x), y) → f(p(-(s(x), y)), p(-(y, s(x))))
f(x, s(y)) → f(p(-(x, s(y))), p(-(s(y), x)))
-(x, 0) → x
-(s(x), s(y)) → -(x, y)
p(s(x)) → x
f(s(x), y) → f(p(-(s(x), y)), p(-(y, s(x))))
f(x, s(y)) → f(p(-(x, s(y))), p(-(s(y), x)))
-(x, 0) → x
-(s(x), s(y)) → -(x, y)
p(s(x)) → x
f(s(x), y) → f(p(-(s(x), y)), p(-(y, s(x))))
f(x, s(y)) → f(p(-(x, s(y))), p(-(s(y), x)))
-(x0, 0)
-(s(x0), s(x1))
p(s(x0))
f(s(x0), x1)
f(x0, s(x1))
-1(s(x), s(y)) → -1(x, y)
F(s(x), y) → F(p(-(s(x), y)), p(-(y, s(x))))
F(s(x), y) → P(-(s(x), y))
F(s(x), y) → -1(s(x), y)
F(s(x), y) → P(-(y, s(x)))
F(s(x), y) → -1(y, s(x))
F(x, s(y)) → F(p(-(x, s(y))), p(-(s(y), x)))
F(x, s(y)) → P(-(x, s(y)))
F(x, s(y)) → -1(x, s(y))
F(x, s(y)) → P(-(s(y), x))
F(x, s(y)) → -1(s(y), x)
-(x, 0) → x
-(s(x), s(y)) → -(x, y)
p(s(x)) → x
f(s(x), y) → f(p(-(s(x), y)), p(-(y, s(x))))
f(x, s(y)) → f(p(-(x, s(y))), p(-(s(y), x)))
-(x0, 0)
-(s(x0), s(x1))
p(s(x0))
f(s(x0), x1)
f(x0, s(x1))
-1(s(x), s(y)) → -1(x, y)
-(x, 0) → x
-(s(x), s(y)) → -(x, y)
p(s(x)) → x
f(s(x), y) → f(p(-(s(x), y)), p(-(y, s(x))))
f(x, s(y)) → f(p(-(x, s(y))), p(-(s(y), x)))
-(x0, 0)
-(s(x0), s(x1))
p(s(x0))
f(s(x0), x1)
f(x0, s(x1))
The following pairs can be oriented strictly and are deleted.
The remaining pairs can at least be oriented weakly.
-1(s(x), s(y)) → -1(x, y)
-^12 > s1
0 > s1
f2 > s1
-^12: multiset
s1: multiset
0: multiset
f2: [1,2]
-(x, 0) → x
-(s(x), s(y)) → -(x, y)
p(s(x)) → x
f(s(x), y) → f(p(-(s(x), y)), p(-(y, s(x))))
f(x, s(y)) → f(p(-(x, s(y))), p(-(s(y), x)))
-(x, 0) → x
-(s(x), s(y)) → -(x, y)
p(s(x)) → x
f(s(x), y) → f(p(-(s(x), y)), p(-(y, s(x))))
f(x, s(y)) → f(p(-(x, s(y))), p(-(s(y), x)))
-(x0, 0)
-(s(x0), s(x1))
p(s(x0))
f(s(x0), x1)
f(x0, s(x1))
F(x, s(y)) → F(p(-(x, s(y))), p(-(s(y), x)))
F(s(x), y) → F(p(-(s(x), y)), p(-(y, s(x))))
-(x, 0) → x
-(s(x), s(y)) → -(x, y)
p(s(x)) → x
f(s(x), y) → f(p(-(s(x), y)), p(-(y, s(x))))
f(x, s(y)) → f(p(-(x, s(y))), p(-(s(y), x)))
-(x0, 0)
-(s(x0), s(x1))
p(s(x0))
f(s(x0), x1)
f(x0, s(x1))