(0) Obligation:

Q restricted rewrite system:
The TRS R consists of the following rules:

sortSu(circ(sortSu(cons(te(a), sortSu(s))), sortSu(t))) → sortSu(cons(te(msubst(te(a), sortSu(t))), sortSu(circ(sortSu(s), sortSu(t)))))
sortSu(circ(sortSu(cons(sop(lift), sortSu(s))), sortSu(cons(te(a), sortSu(t))))) → sortSu(cons(te(a), sortSu(circ(sortSu(s), sortSu(t)))))
sortSu(circ(sortSu(cons(sop(lift), sortSu(s))), sortSu(cons(sop(lift), sortSu(t))))) → sortSu(cons(sop(lift), sortSu(circ(sortSu(s), sortSu(t)))))
sortSu(circ(sortSu(circ(sortSu(s), sortSu(t))), sortSu(u))) → sortSu(circ(sortSu(s), sortSu(circ(sortSu(t), sortSu(u)))))
sortSu(circ(sortSu(s), sortSu(id))) → sortSu(s)
sortSu(circ(sortSu(id), sortSu(s))) → sortSu(s)
sortSu(circ(sortSu(cons(sop(lift), sortSu(s))), sortSu(circ(sortSu(cons(sop(lift), sortSu(t))), sortSu(u))))) → sortSu(circ(sortSu(cons(sop(lift), sortSu(circ(sortSu(s), sortSu(t))))), sortSu(u)))
te(subst(te(a), sortSu(id))) → te(a)
te(msubst(te(a), sortSu(id))) → te(a)
te(msubst(te(msubst(te(a), sortSu(s))), sortSu(t))) → te(msubst(te(a), sortSu(circ(sortSu(s), sortSu(t)))))

Q is empty.

(1) DependencyPairsProof (EQUIVALENT transformation)

Using Dependency Pairs [AG00,LPAR04] we result in the following initial DP problem.

(2) Obligation:

Q DP problem:
The TRS P consists of the following rules:

SORTSU(circ(sortSu(cons(te(a), sortSu(s))), sortSu(t))) → SORTSU(cons(te(msubst(te(a), sortSu(t))), sortSu(circ(sortSu(s), sortSu(t)))))
SORTSU(circ(sortSu(cons(te(a), sortSu(s))), sortSu(t))) → TE(msubst(te(a), sortSu(t)))
SORTSU(circ(sortSu(cons(te(a), sortSu(s))), sortSu(t))) → SORTSU(circ(sortSu(s), sortSu(t)))
SORTSU(circ(sortSu(cons(sop(lift), sortSu(s))), sortSu(cons(te(a), sortSu(t))))) → SORTSU(cons(te(a), sortSu(circ(sortSu(s), sortSu(t)))))
SORTSU(circ(sortSu(cons(sop(lift), sortSu(s))), sortSu(cons(te(a), sortSu(t))))) → SORTSU(circ(sortSu(s), sortSu(t)))
SORTSU(circ(sortSu(cons(sop(lift), sortSu(s))), sortSu(cons(sop(lift), sortSu(t))))) → SORTSU(cons(sop(lift), sortSu(circ(sortSu(s), sortSu(t)))))
SORTSU(circ(sortSu(cons(sop(lift), sortSu(s))), sortSu(cons(sop(lift), sortSu(t))))) → SORTSU(circ(sortSu(s), sortSu(t)))
SORTSU(circ(sortSu(circ(sortSu(s), sortSu(t))), sortSu(u))) → SORTSU(circ(sortSu(s), sortSu(circ(sortSu(t), sortSu(u)))))
SORTSU(circ(sortSu(circ(sortSu(s), sortSu(t))), sortSu(u))) → SORTSU(circ(sortSu(t), sortSu(u)))
SORTSU(circ(sortSu(cons(sop(lift), sortSu(s))), sortSu(circ(sortSu(cons(sop(lift), sortSu(t))), sortSu(u))))) → SORTSU(circ(sortSu(cons(sop(lift), sortSu(circ(sortSu(s), sortSu(t))))), sortSu(u)))
SORTSU(circ(sortSu(cons(sop(lift), sortSu(s))), sortSu(circ(sortSu(cons(sop(lift), sortSu(t))), sortSu(u))))) → SORTSU(cons(sop(lift), sortSu(circ(sortSu(s), sortSu(t)))))
SORTSU(circ(sortSu(cons(sop(lift), sortSu(s))), sortSu(circ(sortSu(cons(sop(lift), sortSu(t))), sortSu(u))))) → SORTSU(circ(sortSu(s), sortSu(t)))
TE(msubst(te(msubst(te(a), sortSu(s))), sortSu(t))) → TE(msubst(te(a), sortSu(circ(sortSu(s), sortSu(t)))))
TE(msubst(te(msubst(te(a), sortSu(s))), sortSu(t))) → SORTSU(circ(sortSu(s), sortSu(t)))

The TRS R consists of the following rules:

sortSu(circ(sortSu(cons(te(a), sortSu(s))), sortSu(t))) → sortSu(cons(te(msubst(te(a), sortSu(t))), sortSu(circ(sortSu(s), sortSu(t)))))
sortSu(circ(sortSu(cons(sop(lift), sortSu(s))), sortSu(cons(te(a), sortSu(t))))) → sortSu(cons(te(a), sortSu(circ(sortSu(s), sortSu(t)))))
sortSu(circ(sortSu(cons(sop(lift), sortSu(s))), sortSu(cons(sop(lift), sortSu(t))))) → sortSu(cons(sop(lift), sortSu(circ(sortSu(s), sortSu(t)))))
sortSu(circ(sortSu(circ(sortSu(s), sortSu(t))), sortSu(u))) → sortSu(circ(sortSu(s), sortSu(circ(sortSu(t), sortSu(u)))))
sortSu(circ(sortSu(s), sortSu(id))) → sortSu(s)
sortSu(circ(sortSu(id), sortSu(s))) → sortSu(s)
sortSu(circ(sortSu(cons(sop(lift), sortSu(s))), sortSu(circ(sortSu(cons(sop(lift), sortSu(t))), sortSu(u))))) → sortSu(circ(sortSu(cons(sop(lift), sortSu(circ(sortSu(s), sortSu(t))))), sortSu(u)))
te(subst(te(a), sortSu(id))) → te(a)
te(msubst(te(a), sortSu(id))) → te(a)
te(msubst(te(msubst(te(a), sortSu(s))), sortSu(t))) → te(msubst(te(a), sortSu(circ(sortSu(s), sortSu(t)))))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(3) DependencyGraphProof (EQUIVALENT transformation)

The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 1 SCC with 4 less nodes.

(4) Obligation:

Q DP problem:
The TRS P consists of the following rules:

SORTSU(circ(sortSu(cons(te(a), sortSu(s))), sortSu(t))) → TE(msubst(te(a), sortSu(t)))
TE(msubst(te(msubst(te(a), sortSu(s))), sortSu(t))) → TE(msubst(te(a), sortSu(circ(sortSu(s), sortSu(t)))))
TE(msubst(te(msubst(te(a), sortSu(s))), sortSu(t))) → SORTSU(circ(sortSu(s), sortSu(t)))
SORTSU(circ(sortSu(cons(te(a), sortSu(s))), sortSu(t))) → SORTSU(circ(sortSu(s), sortSu(t)))
SORTSU(circ(sortSu(cons(sop(lift), sortSu(s))), sortSu(cons(te(a), sortSu(t))))) → SORTSU(circ(sortSu(s), sortSu(t)))
SORTSU(circ(sortSu(cons(sop(lift), sortSu(s))), sortSu(cons(sop(lift), sortSu(t))))) → SORTSU(circ(sortSu(s), sortSu(t)))
SORTSU(circ(sortSu(circ(sortSu(s), sortSu(t))), sortSu(u))) → SORTSU(circ(sortSu(s), sortSu(circ(sortSu(t), sortSu(u)))))
SORTSU(circ(sortSu(circ(sortSu(s), sortSu(t))), sortSu(u))) → SORTSU(circ(sortSu(t), sortSu(u)))
SORTSU(circ(sortSu(cons(sop(lift), sortSu(s))), sortSu(circ(sortSu(cons(sop(lift), sortSu(t))), sortSu(u))))) → SORTSU(circ(sortSu(cons(sop(lift), sortSu(circ(sortSu(s), sortSu(t))))), sortSu(u)))
SORTSU(circ(sortSu(cons(sop(lift), sortSu(s))), sortSu(circ(sortSu(cons(sop(lift), sortSu(t))), sortSu(u))))) → SORTSU(circ(sortSu(s), sortSu(t)))

The TRS R consists of the following rules:

sortSu(circ(sortSu(cons(te(a), sortSu(s))), sortSu(t))) → sortSu(cons(te(msubst(te(a), sortSu(t))), sortSu(circ(sortSu(s), sortSu(t)))))
sortSu(circ(sortSu(cons(sop(lift), sortSu(s))), sortSu(cons(te(a), sortSu(t))))) → sortSu(cons(te(a), sortSu(circ(sortSu(s), sortSu(t)))))
sortSu(circ(sortSu(cons(sop(lift), sortSu(s))), sortSu(cons(sop(lift), sortSu(t))))) → sortSu(cons(sop(lift), sortSu(circ(sortSu(s), sortSu(t)))))
sortSu(circ(sortSu(circ(sortSu(s), sortSu(t))), sortSu(u))) → sortSu(circ(sortSu(s), sortSu(circ(sortSu(t), sortSu(u)))))
sortSu(circ(sortSu(s), sortSu(id))) → sortSu(s)
sortSu(circ(sortSu(id), sortSu(s))) → sortSu(s)
sortSu(circ(sortSu(cons(sop(lift), sortSu(s))), sortSu(circ(sortSu(cons(sop(lift), sortSu(t))), sortSu(u))))) → sortSu(circ(sortSu(cons(sop(lift), sortSu(circ(sortSu(s), sortSu(t))))), sortSu(u)))
te(subst(te(a), sortSu(id))) → te(a)
te(msubst(te(a), sortSu(id))) → te(a)
te(msubst(te(msubst(te(a), sortSu(s))), sortSu(t))) → te(msubst(te(a), sortSu(circ(sortSu(s), sortSu(t)))))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(5) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


SORTSU(circ(sortSu(cons(te(a), sortSu(s))), sortSu(t))) → TE(msubst(te(a), sortSu(t)))
SORTSU(circ(sortSu(cons(te(a), sortSu(s))), sortSu(t))) → SORTSU(circ(sortSu(s), sortSu(t)))
SORTSU(circ(sortSu(cons(sop(lift), sortSu(s))), sortSu(cons(te(a), sortSu(t))))) → SORTSU(circ(sortSu(s), sortSu(t)))
SORTSU(circ(sortSu(cons(sop(lift), sortSu(s))), sortSu(cons(sop(lift), sortSu(t))))) → SORTSU(circ(sortSu(s), sortSu(t)))
SORTSU(circ(sortSu(cons(sop(lift), sortSu(s))), sortSu(circ(sortSu(cons(sop(lift), sortSu(t))), sortSu(u))))) → SORTSU(circ(sortSu(cons(sop(lift), sortSu(circ(sortSu(s), sortSu(t))))), sortSu(u)))
SORTSU(circ(sortSu(cons(sop(lift), sortSu(s))), sortSu(circ(sortSu(cons(sop(lift), sortSu(t))), sortSu(u))))) → SORTSU(circ(sortSu(s), sortSu(t)))
The remaining pairs can at least be oriented weakly.
Used ordering: Polynomial interpretation with max and min functions [POLO,MAXPOLO]:

POL(SORTSU(x1)) = x1   
POL(TE(x1)) = x1   
POL(circ(x1, x2)) = x1 + x2   
POL(cons(x1, x2)) = 1 + max(x1, x2)   
POL(id) = 0   
POL(lift) = 0   
POL(msubst(x1, x2)) = x1 + x2   
POL(sop(x1)) = 0   
POL(sortSu(x1)) = x1   
POL(subst(x1, x2)) = x1   
POL(te(x1)) = x1   

The following usable rules [FROCOS05] were oriented:

te(msubst(te(msubst(te(a), sortSu(s))), sortSu(t))) → te(msubst(te(a), sortSu(circ(sortSu(s), sortSu(t)))))
te(msubst(te(a), sortSu(id))) → te(a)
te(subst(te(a), sortSu(id))) → te(a)
sortSu(circ(sortSu(cons(te(a), sortSu(s))), sortSu(t))) → sortSu(cons(te(msubst(te(a), sortSu(t))), sortSu(circ(sortSu(s), sortSu(t)))))
sortSu(circ(sortSu(cons(sop(lift), sortSu(s))), sortSu(cons(te(a), sortSu(t))))) → sortSu(cons(te(a), sortSu(circ(sortSu(s), sortSu(t)))))
sortSu(circ(sortSu(cons(sop(lift), sortSu(s))), sortSu(cons(sop(lift), sortSu(t))))) → sortSu(cons(sop(lift), sortSu(circ(sortSu(s), sortSu(t)))))
sortSu(circ(sortSu(cons(sop(lift), sortSu(s))), sortSu(circ(sortSu(cons(sop(lift), sortSu(t))), sortSu(u))))) → sortSu(circ(sortSu(cons(sop(lift), sortSu(circ(sortSu(s), sortSu(t))))), sortSu(u)))
sortSu(circ(sortSu(circ(sortSu(s), sortSu(t))), sortSu(u))) → sortSu(circ(sortSu(s), sortSu(circ(sortSu(t), sortSu(u)))))
sortSu(circ(sortSu(s), sortSu(id))) → sortSu(s)
sortSu(circ(sortSu(id), sortSu(s))) → sortSu(s)

(6) Obligation:

Q DP problem:
The TRS P consists of the following rules:

TE(msubst(te(msubst(te(a), sortSu(s))), sortSu(t))) → TE(msubst(te(a), sortSu(circ(sortSu(s), sortSu(t)))))
TE(msubst(te(msubst(te(a), sortSu(s))), sortSu(t))) → SORTSU(circ(sortSu(s), sortSu(t)))
SORTSU(circ(sortSu(circ(sortSu(s), sortSu(t))), sortSu(u))) → SORTSU(circ(sortSu(s), sortSu(circ(sortSu(t), sortSu(u)))))
SORTSU(circ(sortSu(circ(sortSu(s), sortSu(t))), sortSu(u))) → SORTSU(circ(sortSu(t), sortSu(u)))

The TRS R consists of the following rules:

sortSu(circ(sortSu(cons(te(a), sortSu(s))), sortSu(t))) → sortSu(cons(te(msubst(te(a), sortSu(t))), sortSu(circ(sortSu(s), sortSu(t)))))
sortSu(circ(sortSu(cons(sop(lift), sortSu(s))), sortSu(cons(te(a), sortSu(t))))) → sortSu(cons(te(a), sortSu(circ(sortSu(s), sortSu(t)))))
sortSu(circ(sortSu(cons(sop(lift), sortSu(s))), sortSu(cons(sop(lift), sortSu(t))))) → sortSu(cons(sop(lift), sortSu(circ(sortSu(s), sortSu(t)))))
sortSu(circ(sortSu(circ(sortSu(s), sortSu(t))), sortSu(u))) → sortSu(circ(sortSu(s), sortSu(circ(sortSu(t), sortSu(u)))))
sortSu(circ(sortSu(s), sortSu(id))) → sortSu(s)
sortSu(circ(sortSu(id), sortSu(s))) → sortSu(s)
sortSu(circ(sortSu(cons(sop(lift), sortSu(s))), sortSu(circ(sortSu(cons(sop(lift), sortSu(t))), sortSu(u))))) → sortSu(circ(sortSu(cons(sop(lift), sortSu(circ(sortSu(s), sortSu(t))))), sortSu(u)))
te(subst(te(a), sortSu(id))) → te(a)
te(msubst(te(a), sortSu(id))) → te(a)
te(msubst(te(msubst(te(a), sortSu(s))), sortSu(t))) → te(msubst(te(a), sortSu(circ(sortSu(s), sortSu(t)))))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(7) DependencyGraphProof (EQUIVALENT transformation)

The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 2 SCCs with 1 less node.

(8) Complex Obligation (AND)

(9) Obligation:

Q DP problem:
The TRS P consists of the following rules:

SORTSU(circ(sortSu(circ(sortSu(s), sortSu(t))), sortSu(u))) → SORTSU(circ(sortSu(t), sortSu(u)))
SORTSU(circ(sortSu(circ(sortSu(s), sortSu(t))), sortSu(u))) → SORTSU(circ(sortSu(s), sortSu(circ(sortSu(t), sortSu(u)))))

The TRS R consists of the following rules:

sortSu(circ(sortSu(cons(te(a), sortSu(s))), sortSu(t))) → sortSu(cons(te(msubst(te(a), sortSu(t))), sortSu(circ(sortSu(s), sortSu(t)))))
sortSu(circ(sortSu(cons(sop(lift), sortSu(s))), sortSu(cons(te(a), sortSu(t))))) → sortSu(cons(te(a), sortSu(circ(sortSu(s), sortSu(t)))))
sortSu(circ(sortSu(cons(sop(lift), sortSu(s))), sortSu(cons(sop(lift), sortSu(t))))) → sortSu(cons(sop(lift), sortSu(circ(sortSu(s), sortSu(t)))))
sortSu(circ(sortSu(circ(sortSu(s), sortSu(t))), sortSu(u))) → sortSu(circ(sortSu(s), sortSu(circ(sortSu(t), sortSu(u)))))
sortSu(circ(sortSu(s), sortSu(id))) → sortSu(s)
sortSu(circ(sortSu(id), sortSu(s))) → sortSu(s)
sortSu(circ(sortSu(cons(sop(lift), sortSu(s))), sortSu(circ(sortSu(cons(sop(lift), sortSu(t))), sortSu(u))))) → sortSu(circ(sortSu(cons(sop(lift), sortSu(circ(sortSu(s), sortSu(t))))), sortSu(u)))
te(subst(te(a), sortSu(id))) → te(a)
te(msubst(te(a), sortSu(id))) → te(a)
te(msubst(te(msubst(te(a), sortSu(s))), sortSu(t))) → te(msubst(te(a), sortSu(circ(sortSu(s), sortSu(t)))))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(10) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


SORTSU(circ(sortSu(circ(sortSu(s), sortSu(t))), sortSu(u))) → SORTSU(circ(sortSu(t), sortSu(u)))
The remaining pairs can at least be oriented weakly.
Used ordering: Polynomial interpretation [POLO]:

POL(SORTSU(x1)) = x1   
POL(circ(x1, x2)) = x1 + x2   
POL(cons(x1, x2)) = 0   
POL(id) = 0   
POL(lift) = 0   
POL(msubst(x1, x2)) = 0   
POL(sop(x1)) = 0   
POL(sortSu(x1)) = 1 + x1   
POL(subst(x1, x2)) = 0   
POL(te(x1)) = 0   

The following usable rules [FROCOS05] were oriented:

te(msubst(te(msubst(te(a), sortSu(s))), sortSu(t))) → te(msubst(te(a), sortSu(circ(sortSu(s), sortSu(t)))))
te(msubst(te(a), sortSu(id))) → te(a)
te(subst(te(a), sortSu(id))) → te(a)
sortSu(circ(sortSu(cons(te(a), sortSu(s))), sortSu(t))) → sortSu(cons(te(msubst(te(a), sortSu(t))), sortSu(circ(sortSu(s), sortSu(t)))))
sortSu(circ(sortSu(cons(sop(lift), sortSu(s))), sortSu(cons(te(a), sortSu(t))))) → sortSu(cons(te(a), sortSu(circ(sortSu(s), sortSu(t)))))
sortSu(circ(sortSu(cons(sop(lift), sortSu(s))), sortSu(cons(sop(lift), sortSu(t))))) → sortSu(cons(sop(lift), sortSu(circ(sortSu(s), sortSu(t)))))
sortSu(circ(sortSu(cons(sop(lift), sortSu(s))), sortSu(circ(sortSu(cons(sop(lift), sortSu(t))), sortSu(u))))) → sortSu(circ(sortSu(cons(sop(lift), sortSu(circ(sortSu(s), sortSu(t))))), sortSu(u)))
sortSu(circ(sortSu(circ(sortSu(s), sortSu(t))), sortSu(u))) → sortSu(circ(sortSu(s), sortSu(circ(sortSu(t), sortSu(u)))))
sortSu(circ(sortSu(s), sortSu(id))) → sortSu(s)
sortSu(circ(sortSu(id), sortSu(s))) → sortSu(s)

(11) Obligation:

Q DP problem:
The TRS P consists of the following rules:

SORTSU(circ(sortSu(circ(sortSu(s), sortSu(t))), sortSu(u))) → SORTSU(circ(sortSu(s), sortSu(circ(sortSu(t), sortSu(u)))))

The TRS R consists of the following rules:

sortSu(circ(sortSu(cons(te(a), sortSu(s))), sortSu(t))) → sortSu(cons(te(msubst(te(a), sortSu(t))), sortSu(circ(sortSu(s), sortSu(t)))))
sortSu(circ(sortSu(cons(sop(lift), sortSu(s))), sortSu(cons(te(a), sortSu(t))))) → sortSu(cons(te(a), sortSu(circ(sortSu(s), sortSu(t)))))
sortSu(circ(sortSu(cons(sop(lift), sortSu(s))), sortSu(cons(sop(lift), sortSu(t))))) → sortSu(cons(sop(lift), sortSu(circ(sortSu(s), sortSu(t)))))
sortSu(circ(sortSu(circ(sortSu(s), sortSu(t))), sortSu(u))) → sortSu(circ(sortSu(s), sortSu(circ(sortSu(t), sortSu(u)))))
sortSu(circ(sortSu(s), sortSu(id))) → sortSu(s)
sortSu(circ(sortSu(id), sortSu(s))) → sortSu(s)
sortSu(circ(sortSu(cons(sop(lift), sortSu(s))), sortSu(circ(sortSu(cons(sop(lift), sortSu(t))), sortSu(u))))) → sortSu(circ(sortSu(cons(sop(lift), sortSu(circ(sortSu(s), sortSu(t))))), sortSu(u)))
te(subst(te(a), sortSu(id))) → te(a)
te(msubst(te(a), sortSu(id))) → te(a)
te(msubst(te(msubst(te(a), sortSu(s))), sortSu(t))) → te(msubst(te(a), sortSu(circ(sortSu(s), sortSu(t)))))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(12) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


SORTSU(circ(sortSu(circ(sortSu(s), sortSu(t))), sortSu(u))) → SORTSU(circ(sortSu(s), sortSu(circ(sortSu(t), sortSu(u)))))
The remaining pairs can at least be oriented weakly.
Used ordering: Matrix interpretation [MATRO]:

POL(SORTSU(x1)) =
/0\
\0/
+
/10\
\00/
·x1

POL(circ(x1, x2)) =
/1\
\0/
+
/11\
\11/
·x1 +
/00\
\01/
·x2

POL(sortSu(x1)) =
/1\
\0/
+
/01\
\01/
·x1

POL(te(x1)) =
/0\
\0/
+
/00\
\00/
·x1

POL(msubst(x1, x2)) =
/0\
\0/
+
/00\
\00/
·x1 +
/00\
\00/
·x2

POL(id) =
/0\
\0/

POL(subst(x1, x2)) =
/0\
\0/
+
/00\
\00/
·x1 +
/00\
\00/
·x2

POL(cons(x1, x2)) =
/0\
\0/
+
/00\
\10/
·x1 +
/00\
\00/
·x2

POL(sop(x1)) =
/1\
\0/
+
/00\
\00/
·x1

POL(lift) =
/0\
\0/

The following usable rules [FROCOS05] were oriented:

te(msubst(te(msubst(te(a), sortSu(s))), sortSu(t))) → te(msubst(te(a), sortSu(circ(sortSu(s), sortSu(t)))))
te(msubst(te(a), sortSu(id))) → te(a)
te(subst(te(a), sortSu(id))) → te(a)
sortSu(circ(sortSu(cons(te(a), sortSu(s))), sortSu(t))) → sortSu(cons(te(msubst(te(a), sortSu(t))), sortSu(circ(sortSu(s), sortSu(t)))))
sortSu(circ(sortSu(cons(sop(lift), sortSu(s))), sortSu(cons(te(a), sortSu(t))))) → sortSu(cons(te(a), sortSu(circ(sortSu(s), sortSu(t)))))
sortSu(circ(sortSu(cons(sop(lift), sortSu(s))), sortSu(cons(sop(lift), sortSu(t))))) → sortSu(cons(sop(lift), sortSu(circ(sortSu(s), sortSu(t)))))
sortSu(circ(sortSu(cons(sop(lift), sortSu(s))), sortSu(circ(sortSu(cons(sop(lift), sortSu(t))), sortSu(u))))) → sortSu(circ(sortSu(cons(sop(lift), sortSu(circ(sortSu(s), sortSu(t))))), sortSu(u)))
sortSu(circ(sortSu(circ(sortSu(s), sortSu(t))), sortSu(u))) → sortSu(circ(sortSu(s), sortSu(circ(sortSu(t), sortSu(u)))))
sortSu(circ(sortSu(s), sortSu(id))) → sortSu(s)
sortSu(circ(sortSu(id), sortSu(s))) → sortSu(s)

(13) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

sortSu(circ(sortSu(cons(te(a), sortSu(s))), sortSu(t))) → sortSu(cons(te(msubst(te(a), sortSu(t))), sortSu(circ(sortSu(s), sortSu(t)))))
sortSu(circ(sortSu(cons(sop(lift), sortSu(s))), sortSu(cons(te(a), sortSu(t))))) → sortSu(cons(te(a), sortSu(circ(sortSu(s), sortSu(t)))))
sortSu(circ(sortSu(cons(sop(lift), sortSu(s))), sortSu(cons(sop(lift), sortSu(t))))) → sortSu(cons(sop(lift), sortSu(circ(sortSu(s), sortSu(t)))))
sortSu(circ(sortSu(circ(sortSu(s), sortSu(t))), sortSu(u))) → sortSu(circ(sortSu(s), sortSu(circ(sortSu(t), sortSu(u)))))
sortSu(circ(sortSu(s), sortSu(id))) → sortSu(s)
sortSu(circ(sortSu(id), sortSu(s))) → sortSu(s)
sortSu(circ(sortSu(cons(sop(lift), sortSu(s))), sortSu(circ(sortSu(cons(sop(lift), sortSu(t))), sortSu(u))))) → sortSu(circ(sortSu(cons(sop(lift), sortSu(circ(sortSu(s), sortSu(t))))), sortSu(u)))
te(subst(te(a), sortSu(id))) → te(a)
te(msubst(te(a), sortSu(id))) → te(a)
te(msubst(te(msubst(te(a), sortSu(s))), sortSu(t))) → te(msubst(te(a), sortSu(circ(sortSu(s), sortSu(t)))))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(14) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(15) TRUE

(16) Obligation:

Q DP problem:
The TRS P consists of the following rules:

TE(msubst(te(msubst(te(a), sortSu(s))), sortSu(t))) → TE(msubst(te(a), sortSu(circ(sortSu(s), sortSu(t)))))

The TRS R consists of the following rules:

sortSu(circ(sortSu(cons(te(a), sortSu(s))), sortSu(t))) → sortSu(cons(te(msubst(te(a), sortSu(t))), sortSu(circ(sortSu(s), sortSu(t)))))
sortSu(circ(sortSu(cons(sop(lift), sortSu(s))), sortSu(cons(te(a), sortSu(t))))) → sortSu(cons(te(a), sortSu(circ(sortSu(s), sortSu(t)))))
sortSu(circ(sortSu(cons(sop(lift), sortSu(s))), sortSu(cons(sop(lift), sortSu(t))))) → sortSu(cons(sop(lift), sortSu(circ(sortSu(s), sortSu(t)))))
sortSu(circ(sortSu(circ(sortSu(s), sortSu(t))), sortSu(u))) → sortSu(circ(sortSu(s), sortSu(circ(sortSu(t), sortSu(u)))))
sortSu(circ(sortSu(s), sortSu(id))) → sortSu(s)
sortSu(circ(sortSu(id), sortSu(s))) → sortSu(s)
sortSu(circ(sortSu(cons(sop(lift), sortSu(s))), sortSu(circ(sortSu(cons(sop(lift), sortSu(t))), sortSu(u))))) → sortSu(circ(sortSu(cons(sop(lift), sortSu(circ(sortSu(s), sortSu(t))))), sortSu(u)))
te(subst(te(a), sortSu(id))) → te(a)
te(msubst(te(a), sortSu(id))) → te(a)
te(msubst(te(msubst(te(a), sortSu(s))), sortSu(t))) → te(msubst(te(a), sortSu(circ(sortSu(s), sortSu(t)))))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(17) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


TE(msubst(te(msubst(te(a), sortSu(s))), sortSu(t))) → TE(msubst(te(a), sortSu(circ(sortSu(s), sortSu(t)))))
The remaining pairs can at least be oriented weakly.
Used ordering: Polynomial interpretation [POLO]:

POL(TE(x1)) = x1   
POL(circ(x1, x2)) = 0   
POL(cons(x1, x2)) = 0   
POL(id) = 0   
POL(lift) = 0   
POL(msubst(x1, x2)) = 1 + x1   
POL(sop(x1)) = 0   
POL(sortSu(x1)) = 0   
POL(subst(x1, x2)) = x1   
POL(te(x1)) = 1 + x1   

The following usable rules [FROCOS05] were oriented:

te(msubst(te(msubst(te(a), sortSu(s))), sortSu(t))) → te(msubst(te(a), sortSu(circ(sortSu(s), sortSu(t)))))
te(msubst(te(a), sortSu(id))) → te(a)
te(subst(te(a), sortSu(id))) → te(a)
sortSu(circ(sortSu(cons(te(a), sortSu(s))), sortSu(t))) → sortSu(cons(te(msubst(te(a), sortSu(t))), sortSu(circ(sortSu(s), sortSu(t)))))
sortSu(circ(sortSu(cons(sop(lift), sortSu(s))), sortSu(cons(te(a), sortSu(t))))) → sortSu(cons(te(a), sortSu(circ(sortSu(s), sortSu(t)))))
sortSu(circ(sortSu(cons(sop(lift), sortSu(s))), sortSu(cons(sop(lift), sortSu(t))))) → sortSu(cons(sop(lift), sortSu(circ(sortSu(s), sortSu(t)))))
sortSu(circ(sortSu(cons(sop(lift), sortSu(s))), sortSu(circ(sortSu(cons(sop(lift), sortSu(t))), sortSu(u))))) → sortSu(circ(sortSu(cons(sop(lift), sortSu(circ(sortSu(s), sortSu(t))))), sortSu(u)))
sortSu(circ(sortSu(circ(sortSu(s), sortSu(t))), sortSu(u))) → sortSu(circ(sortSu(s), sortSu(circ(sortSu(t), sortSu(u)))))
sortSu(circ(sortSu(s), sortSu(id))) → sortSu(s)
sortSu(circ(sortSu(id), sortSu(s))) → sortSu(s)

(18) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

sortSu(circ(sortSu(cons(te(a), sortSu(s))), sortSu(t))) → sortSu(cons(te(msubst(te(a), sortSu(t))), sortSu(circ(sortSu(s), sortSu(t)))))
sortSu(circ(sortSu(cons(sop(lift), sortSu(s))), sortSu(cons(te(a), sortSu(t))))) → sortSu(cons(te(a), sortSu(circ(sortSu(s), sortSu(t)))))
sortSu(circ(sortSu(cons(sop(lift), sortSu(s))), sortSu(cons(sop(lift), sortSu(t))))) → sortSu(cons(sop(lift), sortSu(circ(sortSu(s), sortSu(t)))))
sortSu(circ(sortSu(circ(sortSu(s), sortSu(t))), sortSu(u))) → sortSu(circ(sortSu(s), sortSu(circ(sortSu(t), sortSu(u)))))
sortSu(circ(sortSu(s), sortSu(id))) → sortSu(s)
sortSu(circ(sortSu(id), sortSu(s))) → sortSu(s)
sortSu(circ(sortSu(cons(sop(lift), sortSu(s))), sortSu(circ(sortSu(cons(sop(lift), sortSu(t))), sortSu(u))))) → sortSu(circ(sortSu(cons(sop(lift), sortSu(circ(sortSu(s), sortSu(t))))), sortSu(u)))
te(subst(te(a), sortSu(id))) → te(a)
te(msubst(te(a), sortSu(id))) → te(a)
te(msubst(te(msubst(te(a), sortSu(s))), sortSu(t))) → te(msubst(te(a), sortSu(circ(sortSu(s), sortSu(t)))))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(19) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(20) TRUE