0 QTRS
↳1 DependencyPairsProof (⇔)
↳2 QDP
↳3 DependencyGraphProof (⇔)
↳4 AND
↳5 QDP
↳6 QDP
↳7 QDPOrderProof (⇔)
↳8 QDP
↳9 QDP
↳10 QDP
minus(x, 0) → x
minus(0, y) → 0
minus(s(x), s(y)) → minus(p(s(x)), p(s(y)))
minus(x, plus(y, z)) → minus(minus(x, y), z)
p(s(s(x))) → s(p(s(x)))
p(0) → s(s(0))
div(s(x), s(y)) → s(div(minus(x, y), s(y)))
div(plus(x, y), z) → plus(div(x, z), div(y, z))
plus(0, y) → y
plus(s(x), y) → s(plus(y, minus(s(x), s(0))))
MINUS(s(x), s(y)) → MINUS(p(s(x)), p(s(y)))
MINUS(s(x), s(y)) → P(s(x))
MINUS(s(x), s(y)) → P(s(y))
MINUS(x, plus(y, z)) → MINUS(minus(x, y), z)
MINUS(x, plus(y, z)) → MINUS(x, y)
P(s(s(x))) → P(s(x))
DIV(s(x), s(y)) → DIV(minus(x, y), s(y))
DIV(s(x), s(y)) → MINUS(x, y)
DIV(plus(x, y), z) → PLUS(div(x, z), div(y, z))
DIV(plus(x, y), z) → DIV(x, z)
DIV(plus(x, y), z) → DIV(y, z)
PLUS(s(x), y) → PLUS(y, minus(s(x), s(0)))
PLUS(s(x), y) → MINUS(s(x), s(0))
minus(x, 0) → x
minus(0, y) → 0
minus(s(x), s(y)) → minus(p(s(x)), p(s(y)))
minus(x, plus(y, z)) → minus(minus(x, y), z)
p(s(s(x))) → s(p(s(x)))
p(0) → s(s(0))
div(s(x), s(y)) → s(div(minus(x, y), s(y)))
div(plus(x, y), z) → plus(div(x, z), div(y, z))
plus(0, y) → y
plus(s(x), y) → s(plus(y, minus(s(x), s(0))))
P(s(s(x))) → P(s(x))
minus(x, 0) → x
minus(0, y) → 0
minus(s(x), s(y)) → minus(p(s(x)), p(s(y)))
minus(x, plus(y, z)) → minus(minus(x, y), z)
p(s(s(x))) → s(p(s(x)))
p(0) → s(s(0))
div(s(x), s(y)) → s(div(minus(x, y), s(y)))
div(plus(x, y), z) → plus(div(x, z), div(y, z))
plus(0, y) → y
plus(s(x), y) → s(plus(y, minus(s(x), s(0))))
MINUS(x, plus(y, z)) → MINUS(minus(x, y), z)
MINUS(s(x), s(y)) → MINUS(p(s(x)), p(s(y)))
MINUS(x, plus(y, z)) → MINUS(x, y)
minus(x, 0) → x
minus(0, y) → 0
minus(s(x), s(y)) → minus(p(s(x)), p(s(y)))
minus(x, plus(y, z)) → minus(minus(x, y), z)
p(s(s(x))) → s(p(s(x)))
p(0) → s(s(0))
div(s(x), s(y)) → s(div(minus(x, y), s(y)))
div(plus(x, y), z) → plus(div(x, z), div(y, z))
plus(0, y) → y
plus(s(x), y) → s(plus(y, minus(s(x), s(0))))
The following pairs can be oriented strictly and are deleted.
The remaining pairs can at least be oriented weakly.
MINUS(x, plus(y, z)) → MINUS(minus(x, y), z)
MINUS(x, plus(y, z)) → MINUS(x, y)
MINUS2 > plus2
0 > s > plus2
div2 > plus2
plus2: [1,2]
div2: [2,1]
MINUS2: [1,2]
s: []
0: []
minus(x, 0) → x
minus(0, y) → 0
minus(s(x), s(y)) → minus(p(s(x)), p(s(y)))
minus(x, plus(y, z)) → minus(minus(x, y), z)
p(s(s(x))) → s(p(s(x)))
p(0) → s(s(0))
div(s(x), s(y)) → s(div(minus(x, y), s(y)))
div(plus(x, y), z) → plus(div(x, z), div(y, z))
plus(0, y) → y
plus(s(x), y) → s(plus(y, minus(s(x), s(0))))
MINUS(s(x), s(y)) → MINUS(p(s(x)), p(s(y)))
minus(x, 0) → x
minus(0, y) → 0
minus(s(x), s(y)) → minus(p(s(x)), p(s(y)))
minus(x, plus(y, z)) → minus(minus(x, y), z)
p(s(s(x))) → s(p(s(x)))
p(0) → s(s(0))
div(s(x), s(y)) → s(div(minus(x, y), s(y)))
div(plus(x, y), z) → plus(div(x, z), div(y, z))
plus(0, y) → y
plus(s(x), y) → s(plus(y, minus(s(x), s(0))))
PLUS(s(x), y) → PLUS(y, minus(s(x), s(0)))
minus(x, 0) → x
minus(0, y) → 0
minus(s(x), s(y)) → minus(p(s(x)), p(s(y)))
minus(x, plus(y, z)) → minus(minus(x, y), z)
p(s(s(x))) → s(p(s(x)))
p(0) → s(s(0))
div(s(x), s(y)) → s(div(minus(x, y), s(y)))
div(plus(x, y), z) → plus(div(x, z), div(y, z))
plus(0, y) → y
plus(s(x), y) → s(plus(y, minus(s(x), s(0))))
DIV(plus(x, y), z) → DIV(x, z)
DIV(s(x), s(y)) → DIV(minus(x, y), s(y))
DIV(plus(x, y), z) → DIV(y, z)
minus(x, 0) → x
minus(0, y) → 0
minus(s(x), s(y)) → minus(p(s(x)), p(s(y)))
minus(x, plus(y, z)) → minus(minus(x, y), z)
p(s(s(x))) → s(p(s(x)))
p(0) → s(s(0))
div(s(x), s(y)) → s(div(minus(x, y), s(y)))
div(plus(x, y), z) → plus(div(x, z), div(y, z))
plus(0, y) → y
plus(s(x), y) → s(plus(y, minus(s(x), s(0))))