(0) Obligation:

Q restricted rewrite system:
The TRS R consists of the following rules:

p(0) → s(s(0))
p(s(x)) → x
p(p(s(x))) → p(x)
le(p(s(x)), x) → le(x, x)
le(0, y) → true
le(s(x), 0) → false
le(s(x), s(y)) → le(x, y)
minus(x, y) → if(le(x, y), x, y)
if(true, x, y) → 0
if(false, x, y) → s(minus(p(x), y))

Q is empty.

(1) DependencyPairsProof (EQUIVALENT transformation)

Using Dependency Pairs [AG00,LPAR04] we result in the following initial DP problem.

(2) Obligation:

Q DP problem:
The TRS P consists of the following rules:

P(p(s(x))) → P(x)
LE(p(s(x)), x) → LE(x, x)
LE(s(x), s(y)) → LE(x, y)
MINUS(x, y) → IF(le(x, y), x, y)
MINUS(x, y) → LE(x, y)
IF(false, x, y) → MINUS(p(x), y)
IF(false, x, y) → P(x)

The TRS R consists of the following rules:

p(0) → s(s(0))
p(s(x)) → x
p(p(s(x))) → p(x)
le(p(s(x)), x) → le(x, x)
le(0, y) → true
le(s(x), 0) → false
le(s(x), s(y)) → le(x, y)
minus(x, y) → if(le(x, y), x, y)
if(true, x, y) → 0
if(false, x, y) → s(minus(p(x), y))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(3) DependencyGraphProof (EQUIVALENT transformation)

The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 3 SCCs with 2 less nodes.

(4) Complex Obligation (AND)

(5) Obligation:

Q DP problem:
The TRS P consists of the following rules:

LE(s(x), s(y)) → LE(x, y)
LE(p(s(x)), x) → LE(x, x)

The TRS R consists of the following rules:

p(0) → s(s(0))
p(s(x)) → x
p(p(s(x))) → p(x)
le(p(s(x)), x) → le(x, x)
le(0, y) → true
le(s(x), 0) → false
le(s(x), s(y)) → le(x, y)
minus(x, y) → if(le(x, y), x, y)
if(true, x, y) → 0
if(false, x, y) → s(minus(p(x), y))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(6) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


LE(p(s(x)), x) → LE(x, x)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
LE(x1, x2)  =  LE(x1)
s(x1)  =  x1
p(x1)  =  p(x1)
0  =  0
le(x1, x2)  =  le(x1)
true  =  true
false  =  false
minus(x1, x2)  =  x2
if(x1, x2, x3)  =  x3

Lexicographic path order with status [LPO].
Precedence:
LE1 > 0
le1 > true > 0
le1 > false > p1 > 0

Status:
le1: [1]
true: []
false: []
p1: [1]
0: []
LE1: [1]

The following usable rules [FROCOS05] were oriented:

p(0) → s(s(0))
p(s(x)) → x
p(p(s(x))) → p(x)
le(p(s(x)), x) → le(x, x)
le(0, y) → true
le(s(x), 0) → false
le(s(x), s(y)) → le(x, y)
minus(x, y) → if(le(x, y), x, y)
if(true, x, y) → 0
if(false, x, y) → s(minus(p(x), y))

(7) Obligation:

Q DP problem:
The TRS P consists of the following rules:

LE(s(x), s(y)) → LE(x, y)

The TRS R consists of the following rules:

p(0) → s(s(0))
p(s(x)) → x
p(p(s(x))) → p(x)
le(p(s(x)), x) → le(x, x)
le(0, y) → true
le(s(x), 0) → false
le(s(x), s(y)) → le(x, y)
minus(x, y) → if(le(x, y), x, y)
if(true, x, y) → 0
if(false, x, y) → s(minus(p(x), y))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(8) Obligation:

Q DP problem:
The TRS P consists of the following rules:

P(p(s(x))) → P(x)

The TRS R consists of the following rules:

p(0) → s(s(0))
p(s(x)) → x
p(p(s(x))) → p(x)
le(p(s(x)), x) → le(x, x)
le(0, y) → true
le(s(x), 0) → false
le(s(x), s(y)) → le(x, y)
minus(x, y) → if(le(x, y), x, y)
if(true, x, y) → 0
if(false, x, y) → s(minus(p(x), y))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(9) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


P(p(s(x))) → P(x)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
P(x1)  =  P(x1)
p(x1)  =  p(x1)
s(x1)  =  x1
0  =  0
le(x1, x2)  =  le
true  =  true
false  =  false
minus(x1, x2)  =  x2
if(x1, x2, x3)  =  x3

Lexicographic path order with status [LPO].
Precedence:
P1 > 0
p1 > 0
le > true > 0
le > false > 0

Status:
P1: [1]
true: []
false: []
p1: [1]
0: []
le: []

The following usable rules [FROCOS05] were oriented:

p(0) → s(s(0))
p(s(x)) → x
p(p(s(x))) → p(x)
le(p(s(x)), x) → le(x, x)
le(0, y) → true
le(s(x), 0) → false
le(s(x), s(y)) → le(x, y)
minus(x, y) → if(le(x, y), x, y)
if(true, x, y) → 0
if(false, x, y) → s(minus(p(x), y))

(10) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

p(0) → s(s(0))
p(s(x)) → x
p(p(s(x))) → p(x)
le(p(s(x)), x) → le(x, x)
le(0, y) → true
le(s(x), 0) → false
le(s(x), s(y)) → le(x, y)
minus(x, y) → if(le(x, y), x, y)
if(true, x, y) → 0
if(false, x, y) → s(minus(p(x), y))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(11) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(12) TRUE

(13) Obligation:

Q DP problem:
The TRS P consists of the following rules:

IF(false, x, y) → MINUS(p(x), y)
MINUS(x, y) → IF(le(x, y), x, y)

The TRS R consists of the following rules:

p(0) → s(s(0))
p(s(x)) → x
p(p(s(x))) → p(x)
le(p(s(x)), x) → le(x, x)
le(0, y) → true
le(s(x), 0) → false
le(s(x), s(y)) → le(x, y)
minus(x, y) → if(le(x, y), x, y)
if(true, x, y) → 0
if(false, x, y) → s(minus(p(x), y))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.