(0) Obligation:

Q restricted rewrite system:
The TRS R consists of the following rules:

function(iszero, 0, dummy, dummy2) → true
function(iszero, s(x), dummy, dummy2) → false
function(p, 0, dummy, dummy2) → 0
function(p, s(0), dummy, dummy2) → 0
function(p, s(s(x)), dummy, dummy2) → s(function(p, s(x), x, x))
function(plus, dummy, x, y) → function(if, function(iszero, x, x, x), x, y)
function(if, true, x, y) → y
function(if, false, x, y) → function(plus, function(third, x, y, y), function(p, x, x, y), s(y))
function(third, x, y, z) → z

Q is empty.

(1) Overlay + Local Confluence (EQUIVALENT transformation)

The TRS is overlay and locally confluent. By [NOC] we can switch to innermost.

(2) Obligation:

Q restricted rewrite system:
The TRS R consists of the following rules:

function(iszero, 0, dummy, dummy2) → true
function(iszero, s(x), dummy, dummy2) → false
function(p, 0, dummy, dummy2) → 0
function(p, s(0), dummy, dummy2) → 0
function(p, s(s(x)), dummy, dummy2) → s(function(p, s(x), x, x))
function(plus, dummy, x, y) → function(if, function(iszero, x, x, x), x, y)
function(if, true, x, y) → y
function(if, false, x, y) → function(plus, function(third, x, y, y), function(p, x, x, y), s(y))
function(third, x, y, z) → z

The set Q consists of the following terms:

function(iszero, 0, x0, x1)
function(iszero, s(x0), x1, x2)
function(p, 0, x0, x1)
function(p, s(0), x0, x1)
function(p, s(s(x0)), x1, x2)
function(plus, x0, x1, x2)
function(if, true, x0, x1)
function(if, false, x0, x1)
function(third, x0, x1, x2)

(3) DependencyPairsProof (EQUIVALENT transformation)

Using Dependency Pairs [AG00,LPAR04] we result in the following initial DP problem.

(4) Obligation:

Q DP problem:
The TRS P consists of the following rules:

FUNCTION(p, s(s(x)), dummy, dummy2) → FUNCTION(p, s(x), x, x)
FUNCTION(plus, dummy, x, y) → FUNCTION(if, function(iszero, x, x, x), x, y)
FUNCTION(plus, dummy, x, y) → FUNCTION(iszero, x, x, x)
FUNCTION(if, false, x, y) → FUNCTION(plus, function(third, x, y, y), function(p, x, x, y), s(y))
FUNCTION(if, false, x, y) → FUNCTION(third, x, y, y)
FUNCTION(if, false, x, y) → FUNCTION(p, x, x, y)

The TRS R consists of the following rules:

function(iszero, 0, dummy, dummy2) → true
function(iszero, s(x), dummy, dummy2) → false
function(p, 0, dummy, dummy2) → 0
function(p, s(0), dummy, dummy2) → 0
function(p, s(s(x)), dummy, dummy2) → s(function(p, s(x), x, x))
function(plus, dummy, x, y) → function(if, function(iszero, x, x, x), x, y)
function(if, true, x, y) → y
function(if, false, x, y) → function(plus, function(third, x, y, y), function(p, x, x, y), s(y))
function(third, x, y, z) → z

The set Q consists of the following terms:

function(iszero, 0, x0, x1)
function(iszero, s(x0), x1, x2)
function(p, 0, x0, x1)
function(p, s(0), x0, x1)
function(p, s(s(x0)), x1, x2)
function(plus, x0, x1, x2)
function(if, true, x0, x1)
function(if, false, x0, x1)
function(third, x0, x1, x2)

We have to consider all minimal (P,Q,R)-chains.

(5) DependencyGraphProof (EQUIVALENT transformation)

The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 2 SCCs with 3 less nodes.

(6) Complex Obligation (AND)

(7) Obligation:

Q DP problem:
The TRS P consists of the following rules:

FUNCTION(p, s(s(x)), dummy, dummy2) → FUNCTION(p, s(x), x, x)

The TRS R consists of the following rules:

function(iszero, 0, dummy, dummy2) → true
function(iszero, s(x), dummy, dummy2) → false
function(p, 0, dummy, dummy2) → 0
function(p, s(0), dummy, dummy2) → 0
function(p, s(s(x)), dummy, dummy2) → s(function(p, s(x), x, x))
function(plus, dummy, x, y) → function(if, function(iszero, x, x, x), x, y)
function(if, true, x, y) → y
function(if, false, x, y) → function(plus, function(third, x, y, y), function(p, x, x, y), s(y))
function(third, x, y, z) → z

The set Q consists of the following terms:

function(iszero, 0, x0, x1)
function(iszero, s(x0), x1, x2)
function(p, 0, x0, x1)
function(p, s(0), x0, x1)
function(p, s(s(x0)), x1, x2)
function(plus, x0, x1, x2)
function(if, true, x0, x1)
function(if, false, x0, x1)
function(third, x0, x1, x2)

We have to consider all minimal (P,Q,R)-chains.

(8) UsableRulesProof (EQUIVALENT transformation)

As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R.

(9) Obligation:

Q DP problem:
The TRS P consists of the following rules:

FUNCTION(p, s(s(x)), dummy, dummy2) → FUNCTION(p, s(x), x, x)

R is empty.
The set Q consists of the following terms:

function(iszero, 0, x0, x1)
function(iszero, s(x0), x1, x2)
function(p, 0, x0, x1)
function(p, s(0), x0, x1)
function(p, s(s(x0)), x1, x2)
function(plus, x0, x1, x2)
function(if, true, x0, x1)
function(if, false, x0, x1)
function(third, x0, x1, x2)

We have to consider all minimal (P,Q,R)-chains.

(10) QReductionProof (EQUIVALENT transformation)

We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.[THIEMANN].

function(iszero, 0, x0, x1)
function(iszero, s(x0), x1, x2)
function(p, 0, x0, x1)
function(p, s(0), x0, x1)
function(p, s(s(x0)), x1, x2)
function(plus, x0, x1, x2)
function(if, true, x0, x1)
function(if, false, x0, x1)
function(third, x0, x1, x2)

(11) Obligation:

Q DP problem:
The TRS P consists of the following rules:

FUNCTION(p, s(s(x)), dummy, dummy2) → FUNCTION(p, s(x), x, x)

R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(12) QDPSizeChangeProof (EQUIVALENT transformation)

By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem.

From the DPs we obtained the following set of size-change graphs:

  • FUNCTION(p, s(s(x)), dummy, dummy2) → FUNCTION(p, s(x), x, x)
    The graph contains the following edges 1 >= 1, 2 > 2, 2 > 3, 2 > 4

(13) TRUE

(14) Obligation:

Q DP problem:
The TRS P consists of the following rules:

FUNCTION(if, false, x, y) → FUNCTION(plus, function(third, x, y, y), function(p, x, x, y), s(y))
FUNCTION(plus, dummy, x, y) → FUNCTION(if, function(iszero, x, x, x), x, y)

The TRS R consists of the following rules:

function(iszero, 0, dummy, dummy2) → true
function(iszero, s(x), dummy, dummy2) → false
function(p, 0, dummy, dummy2) → 0
function(p, s(0), dummy, dummy2) → 0
function(p, s(s(x)), dummy, dummy2) → s(function(p, s(x), x, x))
function(plus, dummy, x, y) → function(if, function(iszero, x, x, x), x, y)
function(if, true, x, y) → y
function(if, false, x, y) → function(plus, function(third, x, y, y), function(p, x, x, y), s(y))
function(third, x, y, z) → z

The set Q consists of the following terms:

function(iszero, 0, x0, x1)
function(iszero, s(x0), x1, x2)
function(p, 0, x0, x1)
function(p, s(0), x0, x1)
function(p, s(s(x0)), x1, x2)
function(plus, x0, x1, x2)
function(if, true, x0, x1)
function(if, false, x0, x1)
function(third, x0, x1, x2)

We have to consider all minimal (P,Q,R)-chains.

(15) UsableRulesProof (EQUIVALENT transformation)

As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R.

(16) Obligation:

Q DP problem:
The TRS P consists of the following rules:

FUNCTION(if, false, x, y) → FUNCTION(plus, function(third, x, y, y), function(p, x, x, y), s(y))
FUNCTION(plus, dummy, x, y) → FUNCTION(if, function(iszero, x, x, x), x, y)

The TRS R consists of the following rules:

function(iszero, 0, dummy, dummy2) → true
function(iszero, s(x), dummy, dummy2) → false
function(third, x, y, z) → z
function(p, 0, dummy, dummy2) → 0
function(p, s(0), dummy, dummy2) → 0
function(p, s(s(x)), dummy, dummy2) → s(function(p, s(x), x, x))

The set Q consists of the following terms:

function(iszero, 0, x0, x1)
function(iszero, s(x0), x1, x2)
function(p, 0, x0, x1)
function(p, s(0), x0, x1)
function(p, s(s(x0)), x1, x2)
function(plus, x0, x1, x2)
function(if, true, x0, x1)
function(if, false, x0, x1)
function(third, x0, x1, x2)

We have to consider all minimal (P,Q,R)-chains.

(17) Instantiation (EQUIVALENT transformation)

By instantiating [LPAR04] the rule FUNCTION(plus, dummy, x, y) → FUNCTION(if, function(iszero, x, x, x), x, y) we obtained the following new rules [LPAR04]:

FUNCTION(plus, y_0, y_1, s(z1)) → FUNCTION(if, function(iszero, y_1, y_1, y_1), y_1, s(z1))

(18) Obligation:

Q DP problem:
The TRS P consists of the following rules:

FUNCTION(if, false, x, y) → FUNCTION(plus, function(third, x, y, y), function(p, x, x, y), s(y))
FUNCTION(plus, y_0, y_1, s(z1)) → FUNCTION(if, function(iszero, y_1, y_1, y_1), y_1, s(z1))

The TRS R consists of the following rules:

function(iszero, 0, dummy, dummy2) → true
function(iszero, s(x), dummy, dummy2) → false
function(third, x, y, z) → z
function(p, 0, dummy, dummy2) → 0
function(p, s(0), dummy, dummy2) → 0
function(p, s(s(x)), dummy, dummy2) → s(function(p, s(x), x, x))

The set Q consists of the following terms:

function(iszero, 0, x0, x1)
function(iszero, s(x0), x1, x2)
function(p, 0, x0, x1)
function(p, s(0), x0, x1)
function(p, s(s(x0)), x1, x2)
function(plus, x0, x1, x2)
function(if, true, x0, x1)
function(if, false, x0, x1)
function(third, x0, x1, x2)

We have to consider all minimal (P,Q,R)-chains.

(19) Rewriting (EQUIVALENT transformation)

By rewriting [LPAR04] the rule FUNCTION(if, false, x, y) → FUNCTION(plus, function(third, x, y, y), function(p, x, x, y), s(y)) at position [1] we obtained the following new rules [LPAR04]:

FUNCTION(if, false, x, y) → FUNCTION(plus, y, function(p, x, x, y), s(y))

(20) Obligation:

Q DP problem:
The TRS P consists of the following rules:

FUNCTION(plus, dummy, x, y) → FUNCTION(if, function(iszero, x, x, x), x, y)
FUNCTION(if, false, x, y) → FUNCTION(plus, y, function(p, x, x, y), s(y))

The TRS R consists of the following rules:

function(iszero, 0, dummy, dummy2) → true
function(iszero, s(x), dummy, dummy2) → false
function(third, x, y, z) → z
function(p, 0, dummy, dummy2) → 0
function(p, s(0), dummy, dummy2) → 0
function(p, s(s(x)), dummy, dummy2) → s(function(p, s(x), x, x))

The set Q consists of the following terms:

function(iszero, 0, x0, x1)
function(iszero, s(x0), x1, x2)
function(p, 0, x0, x1)
function(p, s(0), x0, x1)
function(p, s(s(x0)), x1, x2)
function(plus, x0, x1, x2)
function(if, true, x0, x1)
function(if, false, x0, x1)
function(third, x0, x1, x2)

We have to consider all minimal (P,Q,R)-chains.

(21) UsableRulesProof (EQUIVALENT transformation)

As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R.

(22) Obligation:

Q DP problem:
The TRS P consists of the following rules:

FUNCTION(plus, dummy, x, y) → FUNCTION(if, function(iszero, x, x, x), x, y)
FUNCTION(if, false, x, y) → FUNCTION(plus, y, function(p, x, x, y), s(y))

The TRS R consists of the following rules:

function(p, 0, dummy, dummy2) → 0
function(p, s(0), dummy, dummy2) → 0
function(p, s(s(x)), dummy, dummy2) → s(function(p, s(x), x, x))
function(iszero, 0, dummy, dummy2) → true
function(iszero, s(x), dummy, dummy2) → false

The set Q consists of the following terms:

function(iszero, 0, x0, x1)
function(iszero, s(x0), x1, x2)
function(p, 0, x0, x1)
function(p, s(0), x0, x1)
function(p, s(s(x0)), x1, x2)
function(plus, x0, x1, x2)
function(if, true, x0, x1)
function(if, false, x0, x1)
function(third, x0, x1, x2)

We have to consider all minimal (P,Q,R)-chains.

(23) Instantiation (EQUIVALENT transformation)

By instantiating [LPAR04] the rule FUNCTION(plus, dummy, x, y) → FUNCTION(if, function(iszero, x, x, x), x, y) we obtained the following new rules [LPAR04]:

FUNCTION(plus, z1, y_0, s(z1)) → FUNCTION(if, function(iszero, y_0, y_0, y_0), y_0, s(z1))

(24) Obligation:

Q DP problem:
The TRS P consists of the following rules:

FUNCTION(if, false, x, y) → FUNCTION(plus, y, function(p, x, x, y), s(y))
FUNCTION(plus, z1, y_0, s(z1)) → FUNCTION(if, function(iszero, y_0, y_0, y_0), y_0, s(z1))

The TRS R consists of the following rules:

function(p, 0, dummy, dummy2) → 0
function(p, s(0), dummy, dummy2) → 0
function(p, s(s(x)), dummy, dummy2) → s(function(p, s(x), x, x))
function(iszero, 0, dummy, dummy2) → true
function(iszero, s(x), dummy, dummy2) → false

The set Q consists of the following terms:

function(iszero, 0, x0, x1)
function(iszero, s(x0), x1, x2)
function(p, 0, x0, x1)
function(p, s(0), x0, x1)
function(p, s(s(x0)), x1, x2)
function(plus, x0, x1, x2)
function(if, true, x0, x1)
function(if, false, x0, x1)
function(third, x0, x1, x2)

We have to consider all minimal (P,Q,R)-chains.

(25) Narrowing (EQUIVALENT transformation)

By narrowing [LPAR04] the rule FUNCTION(plus, z1, y_0, s(z1)) → FUNCTION(if, function(iszero, y_0, y_0, y_0), y_0, s(z1)) at position [1] we obtained the following new rules [LPAR04]:

FUNCTION(plus, y0, 0, s(y0)) → FUNCTION(if, true, 0, s(y0))
FUNCTION(plus, y0, s(x0), s(y0)) → FUNCTION(if, false, s(x0), s(y0))

(26) Obligation:

Q DP problem:
The TRS P consists of the following rules:

FUNCTION(if, false, x, y) → FUNCTION(plus, y, function(p, x, x, y), s(y))
FUNCTION(plus, y0, 0, s(y0)) → FUNCTION(if, true, 0, s(y0))
FUNCTION(plus, y0, s(x0), s(y0)) → FUNCTION(if, false, s(x0), s(y0))

The TRS R consists of the following rules:

function(p, 0, dummy, dummy2) → 0
function(p, s(0), dummy, dummy2) → 0
function(p, s(s(x)), dummy, dummy2) → s(function(p, s(x), x, x))
function(iszero, 0, dummy, dummy2) → true
function(iszero, s(x), dummy, dummy2) → false

The set Q consists of the following terms:

function(iszero, 0, x0, x1)
function(iszero, s(x0), x1, x2)
function(p, 0, x0, x1)
function(p, s(0), x0, x1)
function(p, s(s(x0)), x1, x2)
function(plus, x0, x1, x2)
function(if, true, x0, x1)
function(if, false, x0, x1)
function(third, x0, x1, x2)

We have to consider all minimal (P,Q,R)-chains.

(27) DependencyGraphProof (EQUIVALENT transformation)

The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 1 SCC with 1 less node.

(28) Obligation:

Q DP problem:
The TRS P consists of the following rules:

FUNCTION(plus, y0, s(x0), s(y0)) → FUNCTION(if, false, s(x0), s(y0))
FUNCTION(if, false, x, y) → FUNCTION(plus, y, function(p, x, x, y), s(y))

The TRS R consists of the following rules:

function(p, 0, dummy, dummy2) → 0
function(p, s(0), dummy, dummy2) → 0
function(p, s(s(x)), dummy, dummy2) → s(function(p, s(x), x, x))
function(iszero, 0, dummy, dummy2) → true
function(iszero, s(x), dummy, dummy2) → false

The set Q consists of the following terms:

function(iszero, 0, x0, x1)
function(iszero, s(x0), x1, x2)
function(p, 0, x0, x1)
function(p, s(0), x0, x1)
function(p, s(s(x0)), x1, x2)
function(plus, x0, x1, x2)
function(if, true, x0, x1)
function(if, false, x0, x1)
function(third, x0, x1, x2)

We have to consider all minimal (P,Q,R)-chains.

(29) UsableRulesProof (EQUIVALENT transformation)

As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R.

(30) Obligation:

Q DP problem:
The TRS P consists of the following rules:

FUNCTION(plus, y0, s(x0), s(y0)) → FUNCTION(if, false, s(x0), s(y0))
FUNCTION(if, false, x, y) → FUNCTION(plus, y, function(p, x, x, y), s(y))

The TRS R consists of the following rules:

function(p, 0, dummy, dummy2) → 0
function(p, s(0), dummy, dummy2) → 0
function(p, s(s(x)), dummy, dummy2) → s(function(p, s(x), x, x))

The set Q consists of the following terms:

function(iszero, 0, x0, x1)
function(iszero, s(x0), x1, x2)
function(p, 0, x0, x1)
function(p, s(0), x0, x1)
function(p, s(s(x0)), x1, x2)
function(plus, x0, x1, x2)
function(if, true, x0, x1)
function(if, false, x0, x1)
function(third, x0, x1, x2)

We have to consider all minimal (P,Q,R)-chains.

(31) Narrowing (EQUIVALENT transformation)

By narrowing [LPAR04] the rule FUNCTION(if, false, x, y) → FUNCTION(plus, y, function(p, x, x, y), s(y)) at position [2] we obtained the following new rules [LPAR04]:

FUNCTION(if, false, 0, x1) → FUNCTION(plus, x1, 0, s(x1))
FUNCTION(if, false, s(0), x1) → FUNCTION(plus, x1, 0, s(x1))
FUNCTION(if, false, s(s(x0)), x2) → FUNCTION(plus, x2, s(function(p, s(x0), x0, x0)), s(x2))

(32) Obligation:

Q DP problem:
The TRS P consists of the following rules:

FUNCTION(plus, y0, s(x0), s(y0)) → FUNCTION(if, false, s(x0), s(y0))
FUNCTION(if, false, 0, x1) → FUNCTION(plus, x1, 0, s(x1))
FUNCTION(if, false, s(0), x1) → FUNCTION(plus, x1, 0, s(x1))
FUNCTION(if, false, s(s(x0)), x2) → FUNCTION(plus, x2, s(function(p, s(x0), x0, x0)), s(x2))

The TRS R consists of the following rules:

function(p, 0, dummy, dummy2) → 0
function(p, s(0), dummy, dummy2) → 0
function(p, s(s(x)), dummy, dummy2) → s(function(p, s(x), x, x))

The set Q consists of the following terms:

function(iszero, 0, x0, x1)
function(iszero, s(x0), x1, x2)
function(p, 0, x0, x1)
function(p, s(0), x0, x1)
function(p, s(s(x0)), x1, x2)
function(plus, x0, x1, x2)
function(if, true, x0, x1)
function(if, false, x0, x1)
function(third, x0, x1, x2)

We have to consider all minimal (P,Q,R)-chains.

(33) DependencyGraphProof (EQUIVALENT transformation)

The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 1 SCC with 2 less nodes.

(34) Obligation:

Q DP problem:
The TRS P consists of the following rules:

FUNCTION(if, false, s(s(x0)), x2) → FUNCTION(plus, x2, s(function(p, s(x0), x0, x0)), s(x2))
FUNCTION(plus, y0, s(x0), s(y0)) → FUNCTION(if, false, s(x0), s(y0))

The TRS R consists of the following rules:

function(p, 0, dummy, dummy2) → 0
function(p, s(0), dummy, dummy2) → 0
function(p, s(s(x)), dummy, dummy2) → s(function(p, s(x), x, x))

The set Q consists of the following terms:

function(iszero, 0, x0, x1)
function(iszero, s(x0), x1, x2)
function(p, 0, x0, x1)
function(p, s(0), x0, x1)
function(p, s(s(x0)), x1, x2)
function(plus, x0, x1, x2)
function(if, true, x0, x1)
function(if, false, x0, x1)
function(third, x0, x1, x2)

We have to consider all minimal (P,Q,R)-chains.

(35) UsableRulesProof (EQUIVALENT transformation)

As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R.

(36) Obligation:

Q DP problem:
The TRS P consists of the following rules:

FUNCTION(if, false, s(s(x0)), x2) → FUNCTION(plus, x2, s(function(p, s(x0), x0, x0)), s(x2))
FUNCTION(plus, y0, s(x0), s(y0)) → FUNCTION(if, false, s(x0), s(y0))

The TRS R consists of the following rules:

function(p, s(0), dummy, dummy2) → 0
function(p, s(s(x)), dummy, dummy2) → s(function(p, s(x), x, x))

The set Q consists of the following terms:

function(iszero, 0, x0, x1)
function(iszero, s(x0), x1, x2)
function(p, 0, x0, x1)
function(p, s(0), x0, x1)
function(p, s(s(x0)), x1, x2)
function(plus, x0, x1, x2)
function(if, true, x0, x1)
function(if, false, x0, x1)
function(third, x0, x1, x2)

We have to consider all minimal (P,Q,R)-chains.

(37) Instantiation (EQUIVALENT transformation)

By instantiating [LPAR04] the rule FUNCTION(if, false, s(s(x0)), x2) → FUNCTION(plus, x2, s(function(p, s(x0), x0, x0)), s(x2)) we obtained the following new rules [LPAR04]:

FUNCTION(if, false, s(s(x0)), s(z0)) → FUNCTION(plus, s(z0), s(function(p, s(x0), x0, x0)), s(s(z0)))

(38) Obligation:

Q DP problem:
The TRS P consists of the following rules:

FUNCTION(plus, y0, s(x0), s(y0)) → FUNCTION(if, false, s(x0), s(y0))
FUNCTION(if, false, s(s(x0)), s(z0)) → FUNCTION(plus, s(z0), s(function(p, s(x0), x0, x0)), s(s(z0)))

The TRS R consists of the following rules:

function(p, s(0), dummy, dummy2) → 0
function(p, s(s(x)), dummy, dummy2) → s(function(p, s(x), x, x))

The set Q consists of the following terms:

function(iszero, 0, x0, x1)
function(iszero, s(x0), x1, x2)
function(p, 0, x0, x1)
function(p, s(0), x0, x1)
function(p, s(s(x0)), x1, x2)
function(plus, x0, x1, x2)
function(if, true, x0, x1)
function(if, false, x0, x1)
function(third, x0, x1, x2)

We have to consider all minimal (P,Q,R)-chains.

(39) Instantiation (EQUIVALENT transformation)

By instantiating [LPAR04] the rule FUNCTION(plus, y0, s(x0), s(y0)) → FUNCTION(if, false, s(x0), s(y0)) we obtained the following new rules [LPAR04]:

FUNCTION(plus, s(z1), s(y_0), s(s(z1))) → FUNCTION(if, false, s(y_0), s(s(z1)))

(40) Obligation:

Q DP problem:
The TRS P consists of the following rules:

FUNCTION(if, false, s(s(x0)), s(z0)) → FUNCTION(plus, s(z0), s(function(p, s(x0), x0, x0)), s(s(z0)))
FUNCTION(plus, s(z1), s(y_0), s(s(z1))) → FUNCTION(if, false, s(y_0), s(s(z1)))

The TRS R consists of the following rules:

function(p, s(0), dummy, dummy2) → 0
function(p, s(s(x)), dummy, dummy2) → s(function(p, s(x), x, x))

The set Q consists of the following terms:

function(iszero, 0, x0, x1)
function(iszero, s(x0), x1, x2)
function(p, 0, x0, x1)
function(p, s(0), x0, x1)
function(p, s(s(x0)), x1, x2)
function(plus, x0, x1, x2)
function(if, true, x0, x1)
function(if, false, x0, x1)
function(third, x0, x1, x2)

We have to consider all minimal (P,Q,R)-chains.

(41) Instantiation (EQUIVALENT transformation)

By instantiating [LPAR04] the rule FUNCTION(if, false, s(s(x0)), s(z0)) → FUNCTION(plus, s(z0), s(function(p, s(x0), x0, x0)), s(s(z0))) we obtained the following new rules [LPAR04]:

FUNCTION(if, false, s(s(x0)), s(s(z0))) → FUNCTION(plus, s(s(z0)), s(function(p, s(x0), x0, x0)), s(s(s(z0))))

(42) Obligation:

Q DP problem:
The TRS P consists of the following rules:

FUNCTION(plus, s(z1), s(y_0), s(s(z1))) → FUNCTION(if, false, s(y_0), s(s(z1)))
FUNCTION(if, false, s(s(x0)), s(s(z0))) → FUNCTION(plus, s(s(z0)), s(function(p, s(x0), x0, x0)), s(s(s(z0))))

The TRS R consists of the following rules:

function(p, s(0), dummy, dummy2) → 0
function(p, s(s(x)), dummy, dummy2) → s(function(p, s(x), x, x))

The set Q consists of the following terms:

function(iszero, 0, x0, x1)
function(iszero, s(x0), x1, x2)
function(p, 0, x0, x1)
function(p, s(0), x0, x1)
function(p, s(s(x0)), x1, x2)
function(plus, x0, x1, x2)
function(if, true, x0, x1)
function(if, false, x0, x1)
function(third, x0, x1, x2)

We have to consider all minimal (P,Q,R)-chains.

(43) ForwardInstantiation (EQUIVALENT transformation)

By forward instantiating [JAR06] the rule FUNCTION(plus, s(z1), s(y_0), s(s(z1))) → FUNCTION(if, false, s(y_0), s(s(z1))) we obtained the following new rules [LPAR04]:

FUNCTION(plus, s(x0), s(s(y_0)), s(s(x0))) → FUNCTION(if, false, s(s(y_0)), s(s(x0)))

(44) Obligation:

Q DP problem:
The TRS P consists of the following rules:

FUNCTION(if, false, s(s(x0)), s(s(z0))) → FUNCTION(plus, s(s(z0)), s(function(p, s(x0), x0, x0)), s(s(s(z0))))
FUNCTION(plus, s(x0), s(s(y_0)), s(s(x0))) → FUNCTION(if, false, s(s(y_0)), s(s(x0)))

The TRS R consists of the following rules:

function(p, s(0), dummy, dummy2) → 0
function(p, s(s(x)), dummy, dummy2) → s(function(p, s(x), x, x))

The set Q consists of the following terms:

function(iszero, 0, x0, x1)
function(iszero, s(x0), x1, x2)
function(p, 0, x0, x1)
function(p, s(0), x0, x1)
function(p, s(s(x0)), x1, x2)
function(plus, x0, x1, x2)
function(if, true, x0, x1)
function(if, false, x0, x1)
function(third, x0, x1, x2)

We have to consider all minimal (P,Q,R)-chains.

(45) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


FUNCTION(if, false, s(s(x0)), s(s(z0))) → FUNCTION(plus, s(s(z0)), s(function(p, s(x0), x0, x0)), s(s(s(z0))))
The remaining pairs can at least be oriented weakly.
Used ordering: Matrix interpretation [MATRO]:

POL(FUNCTION(x1, x2, x3, x4)) =
/0\
\0/
+
/00\
\00/
·x1 +
/00\
\00/
·x2 +
/01\
\00/
·x3 +
/00\
\00/
·x4

POL(if) =
/0\
\0/

POL(false) =
/0\
\0/

POL(s(x1)) =
/1\
\0/
+
/11\
\11/
·x1

POL(plus) =
/0\
\0/

POL(function(x1, x2, x3, x4)) =
/0\
\0/
+
/00\
\00/
·x1 +
/01\
\01/
·x2 +
/00\
\00/
·x3 +
/00\
\00/
·x4

POL(p) =
/0\
\0/

POL(0) =
/0\
\0/

The following usable rules [FROCOS05] were oriented:

function(p, s(0), dummy, dummy2) → 0
function(p, s(s(x)), dummy, dummy2) → s(function(p, s(x), x, x))

(46) Obligation:

Q DP problem:
The TRS P consists of the following rules:

FUNCTION(plus, s(x0), s(s(y_0)), s(s(x0))) → FUNCTION(if, false, s(s(y_0)), s(s(x0)))

The TRS R consists of the following rules:

function(p, s(0), dummy, dummy2) → 0
function(p, s(s(x)), dummy, dummy2) → s(function(p, s(x), x, x))

The set Q consists of the following terms:

function(iszero, 0, x0, x1)
function(iszero, s(x0), x1, x2)
function(p, 0, x0, x1)
function(p, s(0), x0, x1)
function(p, s(s(x0)), x1, x2)
function(plus, x0, x1, x2)
function(if, true, x0, x1)
function(if, false, x0, x1)
function(third, x0, x1, x2)

We have to consider all minimal (P,Q,R)-chains.

(47) DependencyGraphProof (EQUIVALENT transformation)

The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 0 SCCs with 1 less node.

(48) TRUE