(0) Obligation:
Q restricted rewrite system:
The TRS R consists of the following rules:
ap(ap(map, f), xs) → ap(ap(ap(if, ap(isEmpty, xs)), f), xs)
ap(ap(ap(if, true), f), xs) → null
ap(ap(ap(if, null), f), xs) → ap(ap(cons, ap(f, ap(last, xs))), ap(ap(if2, f), xs))
ap(ap(if2, f), xs) → ap(ap(map, f), ap(dropLast, xs))
ap(isEmpty, null) → true
ap(isEmpty, ap(ap(cons, x), xs)) → null
ap(last, ap(ap(cons, x), null)) → x
ap(last, ap(ap(cons, x), ap(ap(cons, y), ys))) → ap(last, ap(ap(cons, y), ys))
ap(dropLast, ap(ap(cons, x), null)) → null
ap(dropLast, ap(ap(cons, x), ap(ap(cons, y), ys))) → ap(ap(cons, x), ap(dropLast, ap(ap(cons, y), ys)))
Q is empty.
(1) Overlay + Local Confluence (EQUIVALENT transformation)
The TRS is overlay and locally confluent. By [NOC] we can switch to innermost.
(2) Obligation:
Q restricted rewrite system:
The TRS R consists of the following rules:
ap(ap(map, f), xs) → ap(ap(ap(if, ap(isEmpty, xs)), f), xs)
ap(ap(ap(if, true), f), xs) → null
ap(ap(ap(if, null), f), xs) → ap(ap(cons, ap(f, ap(last, xs))), ap(ap(if2, f), xs))
ap(ap(if2, f), xs) → ap(ap(map, f), ap(dropLast, xs))
ap(isEmpty, null) → true
ap(isEmpty, ap(ap(cons, x), xs)) → null
ap(last, ap(ap(cons, x), null)) → x
ap(last, ap(ap(cons, x), ap(ap(cons, y), ys))) → ap(last, ap(ap(cons, y), ys))
ap(dropLast, ap(ap(cons, x), null)) → null
ap(dropLast, ap(ap(cons, x), ap(ap(cons, y), ys))) → ap(ap(cons, x), ap(dropLast, ap(ap(cons, y), ys)))
The set Q consists of the following terms:
ap(ap(map, x0), x1)
ap(ap(ap(if, true), x0), x1)
ap(ap(ap(if, null), x0), x1)
ap(ap(if2, x0), x1)
ap(isEmpty, null)
ap(isEmpty, ap(ap(cons, x0), x1))
ap(last, ap(ap(cons, x0), null))
ap(last, ap(ap(cons, x0), ap(ap(cons, x1), x2)))
ap(dropLast, ap(ap(cons, x0), null))
ap(dropLast, ap(ap(cons, x0), ap(ap(cons, x1), x2)))
(3) DependencyPairsProof (EQUIVALENT transformation)
Using Dependency Pairs [AG00,LPAR04] we result in the following initial DP problem.
(4) Obligation:
Q DP problem:
The TRS P consists of the following rules:
AP(ap(map, f), xs) → AP(ap(ap(if, ap(isEmpty, xs)), f), xs)
AP(ap(map, f), xs) → AP(ap(if, ap(isEmpty, xs)), f)
AP(ap(map, f), xs) → AP(if, ap(isEmpty, xs))
AP(ap(map, f), xs) → AP(isEmpty, xs)
AP(ap(ap(if, null), f), xs) → AP(ap(cons, ap(f, ap(last, xs))), ap(ap(if2, f), xs))
AP(ap(ap(if, null), f), xs) → AP(cons, ap(f, ap(last, xs)))
AP(ap(ap(if, null), f), xs) → AP(f, ap(last, xs))
AP(ap(ap(if, null), f), xs) → AP(last, xs)
AP(ap(ap(if, null), f), xs) → AP(ap(if2, f), xs)
AP(ap(ap(if, null), f), xs) → AP(if2, f)
AP(ap(if2, f), xs) → AP(ap(map, f), ap(dropLast, xs))
AP(ap(if2, f), xs) → AP(map, f)
AP(ap(if2, f), xs) → AP(dropLast, xs)
AP(last, ap(ap(cons, x), ap(ap(cons, y), ys))) → AP(last, ap(ap(cons, y), ys))
AP(dropLast, ap(ap(cons, x), ap(ap(cons, y), ys))) → AP(ap(cons, x), ap(dropLast, ap(ap(cons, y), ys)))
AP(dropLast, ap(ap(cons, x), ap(ap(cons, y), ys))) → AP(dropLast, ap(ap(cons, y), ys))
The TRS R consists of the following rules:
ap(ap(map, f), xs) → ap(ap(ap(if, ap(isEmpty, xs)), f), xs)
ap(ap(ap(if, true), f), xs) → null
ap(ap(ap(if, null), f), xs) → ap(ap(cons, ap(f, ap(last, xs))), ap(ap(if2, f), xs))
ap(ap(if2, f), xs) → ap(ap(map, f), ap(dropLast, xs))
ap(isEmpty, null) → true
ap(isEmpty, ap(ap(cons, x), xs)) → null
ap(last, ap(ap(cons, x), null)) → x
ap(last, ap(ap(cons, x), ap(ap(cons, y), ys))) → ap(last, ap(ap(cons, y), ys))
ap(dropLast, ap(ap(cons, x), null)) → null
ap(dropLast, ap(ap(cons, x), ap(ap(cons, y), ys))) → ap(ap(cons, x), ap(dropLast, ap(ap(cons, y), ys)))
The set Q consists of the following terms:
ap(ap(map, x0), x1)
ap(ap(ap(if, true), x0), x1)
ap(ap(ap(if, null), x0), x1)
ap(ap(if2, x0), x1)
ap(isEmpty, null)
ap(isEmpty, ap(ap(cons, x0), x1))
ap(last, ap(ap(cons, x0), null))
ap(last, ap(ap(cons, x0), ap(ap(cons, x1), x2)))
ap(dropLast, ap(ap(cons, x0), null))
ap(dropLast, ap(ap(cons, x0), ap(ap(cons, x1), x2)))
We have to consider all minimal (P,Q,R)-chains.
(5) DependencyGraphProof (EQUIVALENT transformation)
The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 3 SCCs with 10 less nodes.
(6) Complex Obligation (AND)
(7) Obligation:
Q DP problem:
The TRS P consists of the following rules:
AP(dropLast, ap(ap(cons, x), ap(ap(cons, y), ys))) → AP(dropLast, ap(ap(cons, y), ys))
The TRS R consists of the following rules:
ap(ap(map, f), xs) → ap(ap(ap(if, ap(isEmpty, xs)), f), xs)
ap(ap(ap(if, true), f), xs) → null
ap(ap(ap(if, null), f), xs) → ap(ap(cons, ap(f, ap(last, xs))), ap(ap(if2, f), xs))
ap(ap(if2, f), xs) → ap(ap(map, f), ap(dropLast, xs))
ap(isEmpty, null) → true
ap(isEmpty, ap(ap(cons, x), xs)) → null
ap(last, ap(ap(cons, x), null)) → x
ap(last, ap(ap(cons, x), ap(ap(cons, y), ys))) → ap(last, ap(ap(cons, y), ys))
ap(dropLast, ap(ap(cons, x), null)) → null
ap(dropLast, ap(ap(cons, x), ap(ap(cons, y), ys))) → ap(ap(cons, x), ap(dropLast, ap(ap(cons, y), ys)))
The set Q consists of the following terms:
ap(ap(map, x0), x1)
ap(ap(ap(if, true), x0), x1)
ap(ap(ap(if, null), x0), x1)
ap(ap(if2, x0), x1)
ap(isEmpty, null)
ap(isEmpty, ap(ap(cons, x0), x1))
ap(last, ap(ap(cons, x0), null))
ap(last, ap(ap(cons, x0), ap(ap(cons, x1), x2)))
ap(dropLast, ap(ap(cons, x0), null))
ap(dropLast, ap(ap(cons, x0), ap(ap(cons, x1), x2)))
We have to consider all minimal (P,Q,R)-chains.
(8) Obligation:
Q DP problem:
The TRS P consists of the following rules:
AP(last, ap(ap(cons, x), ap(ap(cons, y), ys))) → AP(last, ap(ap(cons, y), ys))
The TRS R consists of the following rules:
ap(ap(map, f), xs) → ap(ap(ap(if, ap(isEmpty, xs)), f), xs)
ap(ap(ap(if, true), f), xs) → null
ap(ap(ap(if, null), f), xs) → ap(ap(cons, ap(f, ap(last, xs))), ap(ap(if2, f), xs))
ap(ap(if2, f), xs) → ap(ap(map, f), ap(dropLast, xs))
ap(isEmpty, null) → true
ap(isEmpty, ap(ap(cons, x), xs)) → null
ap(last, ap(ap(cons, x), null)) → x
ap(last, ap(ap(cons, x), ap(ap(cons, y), ys))) → ap(last, ap(ap(cons, y), ys))
ap(dropLast, ap(ap(cons, x), null)) → null
ap(dropLast, ap(ap(cons, x), ap(ap(cons, y), ys))) → ap(ap(cons, x), ap(dropLast, ap(ap(cons, y), ys)))
The set Q consists of the following terms:
ap(ap(map, x0), x1)
ap(ap(ap(if, true), x0), x1)
ap(ap(ap(if, null), x0), x1)
ap(ap(if2, x0), x1)
ap(isEmpty, null)
ap(isEmpty, ap(ap(cons, x0), x1))
ap(last, ap(ap(cons, x0), null))
ap(last, ap(ap(cons, x0), ap(ap(cons, x1), x2)))
ap(dropLast, ap(ap(cons, x0), null))
ap(dropLast, ap(ap(cons, x0), ap(ap(cons, x1), x2)))
We have to consider all minimal (P,Q,R)-chains.
(9) Obligation:
Q DP problem:
The TRS P consists of the following rules:
AP(ap(ap(if, null), f), xs) → AP(f, ap(last, xs))
AP(ap(map, f), xs) → AP(ap(ap(if, ap(isEmpty, xs)), f), xs)
AP(ap(ap(if, null), f), xs) → AP(ap(if2, f), xs)
AP(ap(if2, f), xs) → AP(ap(map, f), ap(dropLast, xs))
The TRS R consists of the following rules:
ap(ap(map, f), xs) → ap(ap(ap(if, ap(isEmpty, xs)), f), xs)
ap(ap(ap(if, true), f), xs) → null
ap(ap(ap(if, null), f), xs) → ap(ap(cons, ap(f, ap(last, xs))), ap(ap(if2, f), xs))
ap(ap(if2, f), xs) → ap(ap(map, f), ap(dropLast, xs))
ap(isEmpty, null) → true
ap(isEmpty, ap(ap(cons, x), xs)) → null
ap(last, ap(ap(cons, x), null)) → x
ap(last, ap(ap(cons, x), ap(ap(cons, y), ys))) → ap(last, ap(ap(cons, y), ys))
ap(dropLast, ap(ap(cons, x), null)) → null
ap(dropLast, ap(ap(cons, x), ap(ap(cons, y), ys))) → ap(ap(cons, x), ap(dropLast, ap(ap(cons, y), ys)))
The set Q consists of the following terms:
ap(ap(map, x0), x1)
ap(ap(ap(if, true), x0), x1)
ap(ap(ap(if, null), x0), x1)
ap(ap(if2, x0), x1)
ap(isEmpty, null)
ap(isEmpty, ap(ap(cons, x0), x1))
ap(last, ap(ap(cons, x0), null))
ap(last, ap(ap(cons, x0), ap(ap(cons, x1), x2)))
ap(dropLast, ap(ap(cons, x0), null))
ap(dropLast, ap(ap(cons, x0), ap(ap(cons, x1), x2)))
We have to consider all minimal (P,Q,R)-chains.