(0) Obligation:

Q restricted rewrite system:
The TRS R consists of the following rules:

fact(X) → if(zero(X), s(0), prod(X, fact(p(X))))
add(0, X) → X
add(s(X), Y) → s(add(X, Y))
prod(0, X) → 0
prod(s(X), Y) → add(Y, prod(X, Y))
if(true, X, Y) → X
if(false, X, Y) → Y
zero(0) → true
zero(s(X)) → false
p(s(X)) → X

Q is empty.

(1) Overlay + Local Confluence (EQUIVALENT transformation)

The TRS is overlay and locally confluent. By [NOC] we can switch to innermost.

(2) Obligation:

Q restricted rewrite system:
The TRS R consists of the following rules:

fact(X) → if(zero(X), s(0), prod(X, fact(p(X))))
add(0, X) → X
add(s(X), Y) → s(add(X, Y))
prod(0, X) → 0
prod(s(X), Y) → add(Y, prod(X, Y))
if(true, X, Y) → X
if(false, X, Y) → Y
zero(0) → true
zero(s(X)) → false
p(s(X)) → X

The set Q consists of the following terms:

fact(x0)
add(0, x0)
add(s(x0), x1)
prod(0, x0)
prod(s(x0), x1)
if(true, x0, x1)
if(false, x0, x1)
zero(0)
zero(s(x0))
p(s(x0))

(3) DependencyPairsProof (EQUIVALENT transformation)

Using Dependency Pairs [AG00,LPAR04] we result in the following initial DP problem.

(4) Obligation:

Q DP problem:
The TRS P consists of the following rules:

FACT(X) → IF(zero(X), s(0), prod(X, fact(p(X))))
FACT(X) → ZERO(X)
FACT(X) → PROD(X, fact(p(X)))
FACT(X) → FACT(p(X))
FACT(X) → P(X)
ADD(s(X), Y) → ADD(X, Y)
PROD(s(X), Y) → ADD(Y, prod(X, Y))
PROD(s(X), Y) → PROD(X, Y)

The TRS R consists of the following rules:

fact(X) → if(zero(X), s(0), prod(X, fact(p(X))))
add(0, X) → X
add(s(X), Y) → s(add(X, Y))
prod(0, X) → 0
prod(s(X), Y) → add(Y, prod(X, Y))
if(true, X, Y) → X
if(false, X, Y) → Y
zero(0) → true
zero(s(X)) → false
p(s(X)) → X

The set Q consists of the following terms:

fact(x0)
add(0, x0)
add(s(x0), x1)
prod(0, x0)
prod(s(x0), x1)
if(true, x0, x1)
if(false, x0, x1)
zero(0)
zero(s(x0))
p(s(x0))

We have to consider all minimal (P,Q,R)-chains.

(5) DependencyGraphProof (EQUIVALENT transformation)

The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 3 SCCs with 5 less nodes.

(6) Complex Obligation (AND)

(7) Obligation:

Q DP problem:
The TRS P consists of the following rules:

ADD(s(X), Y) → ADD(X, Y)

The TRS R consists of the following rules:

fact(X) → if(zero(X), s(0), prod(X, fact(p(X))))
add(0, X) → X
add(s(X), Y) → s(add(X, Y))
prod(0, X) → 0
prod(s(X), Y) → add(Y, prod(X, Y))
if(true, X, Y) → X
if(false, X, Y) → Y
zero(0) → true
zero(s(X)) → false
p(s(X)) → X

The set Q consists of the following terms:

fact(x0)
add(0, x0)
add(s(x0), x1)
prod(0, x0)
prod(s(x0), x1)
if(true, x0, x1)
if(false, x0, x1)
zero(0)
zero(s(x0))
p(s(x0))

We have to consider all minimal (P,Q,R)-chains.

(8) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


ADD(s(X), Y) → ADD(X, Y)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
ADD(x1, x2)  =  ADD(x1)
s(x1)  =  s(x1)

Recursive Path Order [RPO].
Precedence:
s1 > ADD1

The following usable rules [FROCOS05] were oriented: none

(9) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

fact(X) → if(zero(X), s(0), prod(X, fact(p(X))))
add(0, X) → X
add(s(X), Y) → s(add(X, Y))
prod(0, X) → 0
prod(s(X), Y) → add(Y, prod(X, Y))
if(true, X, Y) → X
if(false, X, Y) → Y
zero(0) → true
zero(s(X)) → false
p(s(X)) → X

The set Q consists of the following terms:

fact(x0)
add(0, x0)
add(s(x0), x1)
prod(0, x0)
prod(s(x0), x1)
if(true, x0, x1)
if(false, x0, x1)
zero(0)
zero(s(x0))
p(s(x0))

We have to consider all minimal (P,Q,R)-chains.

(10) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(11) TRUE

(12) Obligation:

Q DP problem:
The TRS P consists of the following rules:

PROD(s(X), Y) → PROD(X, Y)

The TRS R consists of the following rules:

fact(X) → if(zero(X), s(0), prod(X, fact(p(X))))
add(0, X) → X
add(s(X), Y) → s(add(X, Y))
prod(0, X) → 0
prod(s(X), Y) → add(Y, prod(X, Y))
if(true, X, Y) → X
if(false, X, Y) → Y
zero(0) → true
zero(s(X)) → false
p(s(X)) → X

The set Q consists of the following terms:

fact(x0)
add(0, x0)
add(s(x0), x1)
prod(0, x0)
prod(s(x0), x1)
if(true, x0, x1)
if(false, x0, x1)
zero(0)
zero(s(x0))
p(s(x0))

We have to consider all minimal (P,Q,R)-chains.

(13) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


PROD(s(X), Y) → PROD(X, Y)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
PROD(x1, x2)  =  PROD(x1)
s(x1)  =  s(x1)

Recursive Path Order [RPO].
Precedence:
s1 > PROD1

The following usable rules [FROCOS05] were oriented: none

(14) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

fact(X) → if(zero(X), s(0), prod(X, fact(p(X))))
add(0, X) → X
add(s(X), Y) → s(add(X, Y))
prod(0, X) → 0
prod(s(X), Y) → add(Y, prod(X, Y))
if(true, X, Y) → X
if(false, X, Y) → Y
zero(0) → true
zero(s(X)) → false
p(s(X)) → X

The set Q consists of the following terms:

fact(x0)
add(0, x0)
add(s(x0), x1)
prod(0, x0)
prod(s(x0), x1)
if(true, x0, x1)
if(false, x0, x1)
zero(0)
zero(s(x0))
p(s(x0))

We have to consider all minimal (P,Q,R)-chains.

(15) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(16) TRUE

(17) Obligation:

Q DP problem:
The TRS P consists of the following rules:

FACT(X) → FACT(p(X))

The TRS R consists of the following rules:

fact(X) → if(zero(X), s(0), prod(X, fact(p(X))))
add(0, X) → X
add(s(X), Y) → s(add(X, Y))
prod(0, X) → 0
prod(s(X), Y) → add(Y, prod(X, Y))
if(true, X, Y) → X
if(false, X, Y) → Y
zero(0) → true
zero(s(X)) → false
p(s(X)) → X

The set Q consists of the following terms:

fact(x0)
add(0, x0)
add(s(x0), x1)
prod(0, x0)
prod(s(x0), x1)
if(true, x0, x1)
if(false, x0, x1)
zero(0)
zero(s(x0))
p(s(x0))

We have to consider all minimal (P,Q,R)-chains.