0 QTRS
↳1 Overlay + Local Confluence (⇔)
↳2 QTRS
↳3 DependencyPairsProof (⇔)
↳4 QDP
↳5 DependencyGraphProof (⇔)
↳6 AND
↳7 QDP
↳8 QDPOrderProof (⇔)
↳9 QDP
↳10 PisEmptyProof (⇔)
↳11 TRUE
↳12 QDP
primes → sieve(from(s(s(0))))
from(X) → cons(X, from(s(X)))
head(cons(X, Y)) → X
tail(cons(X, Y)) → Y
if(true, X, Y) → X
if(false, X, Y) → Y
filter(s(s(X)), cons(Y, Z)) → if(divides(s(s(X)), Y), filter(s(s(X)), Z), cons(Y, filter(X, sieve(Y))))
sieve(cons(X, Y)) → cons(X, filter(X, sieve(Y)))
primes → sieve(from(s(s(0))))
from(X) → cons(X, from(s(X)))
head(cons(X, Y)) → X
tail(cons(X, Y)) → Y
if(true, X, Y) → X
if(false, X, Y) → Y
filter(s(s(X)), cons(Y, Z)) → if(divides(s(s(X)), Y), filter(s(s(X)), Z), cons(Y, filter(X, sieve(Y))))
sieve(cons(X, Y)) → cons(X, filter(X, sieve(Y)))
primes
from(x0)
head(cons(x0, x1))
tail(cons(x0, x1))
if(true, x0, x1)
if(false, x0, x1)
filter(s(s(x0)), cons(x1, x2))
sieve(cons(x0, x1))
PRIMES → SIEVE(from(s(s(0))))
PRIMES → FROM(s(s(0)))
FROM(X) → FROM(s(X))
FILTER(s(s(X)), cons(Y, Z)) → IF(divides(s(s(X)), Y), filter(s(s(X)), Z), cons(Y, filter(X, sieve(Y))))
FILTER(s(s(X)), cons(Y, Z)) → FILTER(s(s(X)), Z)
FILTER(s(s(X)), cons(Y, Z)) → FILTER(X, sieve(Y))
FILTER(s(s(X)), cons(Y, Z)) → SIEVE(Y)
SIEVE(cons(X, Y)) → FILTER(X, sieve(Y))
SIEVE(cons(X, Y)) → SIEVE(Y)
primes → sieve(from(s(s(0))))
from(X) → cons(X, from(s(X)))
head(cons(X, Y)) → X
tail(cons(X, Y)) → Y
if(true, X, Y) → X
if(false, X, Y) → Y
filter(s(s(X)), cons(Y, Z)) → if(divides(s(s(X)), Y), filter(s(s(X)), Z), cons(Y, filter(X, sieve(Y))))
sieve(cons(X, Y)) → cons(X, filter(X, sieve(Y)))
primes
from(x0)
head(cons(x0, x1))
tail(cons(x0, x1))
if(true, x0, x1)
if(false, x0, x1)
filter(s(s(x0)), cons(x1, x2))
sieve(cons(x0, x1))
FILTER(s(s(X)), cons(Y, Z)) → FILTER(X, sieve(Y))
FILTER(s(s(X)), cons(Y, Z)) → FILTER(s(s(X)), Z)
FILTER(s(s(X)), cons(Y, Z)) → SIEVE(Y)
SIEVE(cons(X, Y)) → FILTER(X, sieve(Y))
SIEVE(cons(X, Y)) → SIEVE(Y)
primes → sieve(from(s(s(0))))
from(X) → cons(X, from(s(X)))
head(cons(X, Y)) → X
tail(cons(X, Y)) → Y
if(true, X, Y) → X
if(false, X, Y) → Y
filter(s(s(X)), cons(Y, Z)) → if(divides(s(s(X)), Y), filter(s(s(X)), Z), cons(Y, filter(X, sieve(Y))))
sieve(cons(X, Y)) → cons(X, filter(X, sieve(Y)))
primes
from(x0)
head(cons(x0, x1))
tail(cons(x0, x1))
if(true, x0, x1)
if(false, x0, x1)
filter(s(s(x0)), cons(x1, x2))
sieve(cons(x0, x1))
The following pairs can be oriented strictly and are deleted.
The remaining pairs can at least be oriented weakly.
FILTER(s(s(X)), cons(Y, Z)) → FILTER(X, sieve(Y))
FILTER(s(s(X)), cons(Y, Z)) → FILTER(s(s(X)), Z)
FILTER(s(s(X)), cons(Y, Z)) → SIEVE(Y)
SIEVE(cons(X, Y)) → FILTER(X, sieve(Y))
SIEVE(cons(X, Y)) → SIEVE(Y)
cons2 > filter
sieve(cons(X, Y)) → cons(X, filter(X, sieve(Y)))
filter(s(s(X)), cons(Y, Z)) → if(divides(s(s(X)), Y), filter(s(s(X)), Z), cons(Y, filter(X, sieve(Y))))
primes → sieve(from(s(s(0))))
from(X) → cons(X, from(s(X)))
head(cons(X, Y)) → X
tail(cons(X, Y)) → Y
if(true, X, Y) → X
if(false, X, Y) → Y
filter(s(s(X)), cons(Y, Z)) → if(divides(s(s(X)), Y), filter(s(s(X)), Z), cons(Y, filter(X, sieve(Y))))
sieve(cons(X, Y)) → cons(X, filter(X, sieve(Y)))
primes
from(x0)
head(cons(x0, x1))
tail(cons(x0, x1))
if(true, x0, x1)
if(false, x0, x1)
filter(s(s(x0)), cons(x1, x2))
sieve(cons(x0, x1))
FROM(X) → FROM(s(X))
primes → sieve(from(s(s(0))))
from(X) → cons(X, from(s(X)))
head(cons(X, Y)) → X
tail(cons(X, Y)) → Y
if(true, X, Y) → X
if(false, X, Y) → Y
filter(s(s(X)), cons(Y, Z)) → if(divides(s(s(X)), Y), filter(s(s(X)), Z), cons(Y, filter(X, sieve(Y))))
sieve(cons(X, Y)) → cons(X, filter(X, sieve(Y)))
primes
from(x0)
head(cons(x0, x1))
tail(cons(x0, x1))
if(true, x0, x1)
if(false, x0, x1)
filter(s(s(x0)), cons(x1, x2))
sieve(cons(x0, x1))