(0) Obligation:

Q restricted rewrite system:
The TRS R consists of the following rules:

natsadx(zeros)
zeroscons(0, zeros)
incr(cons(X, Y)) → cons(s(X), incr(Y))
adx(cons(X, Y)) → incr(cons(X, adx(Y)))
hd(cons(X, Y)) → X
tl(cons(X, Y)) → Y

Q is empty.

(1) Overlay + Local Confluence (EQUIVALENT transformation)

The TRS is overlay and locally confluent. By [NOC] we can switch to innermost.

(2) Obligation:

Q restricted rewrite system:
The TRS R consists of the following rules:

natsadx(zeros)
zeroscons(0, zeros)
incr(cons(X, Y)) → cons(s(X), incr(Y))
adx(cons(X, Y)) → incr(cons(X, adx(Y)))
hd(cons(X, Y)) → X
tl(cons(X, Y)) → Y

The set Q consists of the following terms:

nats
zeros
incr(cons(x0, x1))
adx(cons(x0, x1))
hd(cons(x0, x1))
tl(cons(x0, x1))

(3) DependencyPairsProof (EQUIVALENT transformation)

Using Dependency Pairs [AG00,LPAR04] we result in the following initial DP problem.

(4) Obligation:

Q DP problem:
The TRS P consists of the following rules:

NATSADX(zeros)
NATSZEROS
ZEROSZEROS
INCR(cons(X, Y)) → INCR(Y)
ADX(cons(X, Y)) → INCR(cons(X, adx(Y)))
ADX(cons(X, Y)) → ADX(Y)

The TRS R consists of the following rules:

natsadx(zeros)
zeroscons(0, zeros)
incr(cons(X, Y)) → cons(s(X), incr(Y))
adx(cons(X, Y)) → incr(cons(X, adx(Y)))
hd(cons(X, Y)) → X
tl(cons(X, Y)) → Y

The set Q consists of the following terms:

nats
zeros
incr(cons(x0, x1))
adx(cons(x0, x1))
hd(cons(x0, x1))
tl(cons(x0, x1))

We have to consider all minimal (P,Q,R)-chains.

(5) DependencyGraphProof (EQUIVALENT transformation)

The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 3 SCCs with 3 less nodes.

(6) Complex Obligation (AND)

(7) Obligation:

Q DP problem:
The TRS P consists of the following rules:

INCR(cons(X, Y)) → INCR(Y)

The TRS R consists of the following rules:

natsadx(zeros)
zeroscons(0, zeros)
incr(cons(X, Y)) → cons(s(X), incr(Y))
adx(cons(X, Y)) → incr(cons(X, adx(Y)))
hd(cons(X, Y)) → X
tl(cons(X, Y)) → Y

The set Q consists of the following terms:

nats
zeros
incr(cons(x0, x1))
adx(cons(x0, x1))
hd(cons(x0, x1))
tl(cons(x0, x1))

We have to consider all minimal (P,Q,R)-chains.

(8) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


INCR(cons(X, Y)) → INCR(Y)
The remaining pairs can at least be oriented weakly.
Used ordering: Recursive path order with status [RPO].
Precedence:
cons2 > INCR1

Status:
INCR1: [1]
cons2: multiset

The following usable rules [FROCOS05] were oriented: none

(9) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

natsadx(zeros)
zeroscons(0, zeros)
incr(cons(X, Y)) → cons(s(X), incr(Y))
adx(cons(X, Y)) → incr(cons(X, adx(Y)))
hd(cons(X, Y)) → X
tl(cons(X, Y)) → Y

The set Q consists of the following terms:

nats
zeros
incr(cons(x0, x1))
adx(cons(x0, x1))
hd(cons(x0, x1))
tl(cons(x0, x1))

We have to consider all minimal (P,Q,R)-chains.

(10) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(11) TRUE

(12) Obligation:

Q DP problem:
The TRS P consists of the following rules:

ADX(cons(X, Y)) → ADX(Y)

The TRS R consists of the following rules:

natsadx(zeros)
zeroscons(0, zeros)
incr(cons(X, Y)) → cons(s(X), incr(Y))
adx(cons(X, Y)) → incr(cons(X, adx(Y)))
hd(cons(X, Y)) → X
tl(cons(X, Y)) → Y

The set Q consists of the following terms:

nats
zeros
incr(cons(x0, x1))
adx(cons(x0, x1))
hd(cons(x0, x1))
tl(cons(x0, x1))

We have to consider all minimal (P,Q,R)-chains.

(13) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


ADX(cons(X, Y)) → ADX(Y)
The remaining pairs can at least be oriented weakly.
Used ordering: Recursive path order with status [RPO].
Precedence:
cons2 > ADX1

Status:
ADX1: [1]
cons2: multiset

The following usable rules [FROCOS05] were oriented: none

(14) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

natsadx(zeros)
zeroscons(0, zeros)
incr(cons(X, Y)) → cons(s(X), incr(Y))
adx(cons(X, Y)) → incr(cons(X, adx(Y)))
hd(cons(X, Y)) → X
tl(cons(X, Y)) → Y

The set Q consists of the following terms:

nats
zeros
incr(cons(x0, x1))
adx(cons(x0, x1))
hd(cons(x0, x1))
tl(cons(x0, x1))

We have to consider all minimal (P,Q,R)-chains.

(15) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(16) TRUE

(17) Obligation:

Q DP problem:
The TRS P consists of the following rules:

ZEROSZEROS

The TRS R consists of the following rules:

natsadx(zeros)
zeroscons(0, zeros)
incr(cons(X, Y)) → cons(s(X), incr(Y))
adx(cons(X, Y)) → incr(cons(X, adx(Y)))
hd(cons(X, Y)) → X
tl(cons(X, Y)) → Y

The set Q consists of the following terms:

nats
zeros
incr(cons(x0, x1))
adx(cons(x0, x1))
hd(cons(x0, x1))
tl(cons(x0, x1))

We have to consider all minimal (P,Q,R)-chains.