(0) Obligation:

Q restricted rewrite system:
The TRS R consists of the following rules:

from(X) → cons(X, from(s(X)))
2ndspos(0, Z) → rnil
2ndspos(s(N), cons(X, Z)) → 2ndspos(s(N), cons2(X, Z))
2ndspos(s(N), cons2(X, cons(Y, Z))) → rcons(posrecip(Y), 2ndsneg(N, Z))
2ndsneg(0, Z) → rnil
2ndsneg(s(N), cons(X, Z)) → 2ndsneg(s(N), cons2(X, Z))
2ndsneg(s(N), cons2(X, cons(Y, Z))) → rcons(negrecip(Y), 2ndspos(N, Z))
pi(X) → 2ndspos(X, from(0))
plus(0, Y) → Y
plus(s(X), Y) → s(plus(X, Y))
times(0, Y) → 0
times(s(X), Y) → plus(Y, times(X, Y))
square(X) → times(X, X)

Q is empty.

(1) Overlay + Local Confluence (EQUIVALENT transformation)

The TRS is overlay and locally confluent. By [NOC] we can switch to innermost.

(2) Obligation:

Q restricted rewrite system:
The TRS R consists of the following rules:

from(X) → cons(X, from(s(X)))
2ndspos(0, Z) → rnil
2ndspos(s(N), cons(X, Z)) → 2ndspos(s(N), cons2(X, Z))
2ndspos(s(N), cons2(X, cons(Y, Z))) → rcons(posrecip(Y), 2ndsneg(N, Z))
2ndsneg(0, Z) → rnil
2ndsneg(s(N), cons(X, Z)) → 2ndsneg(s(N), cons2(X, Z))
2ndsneg(s(N), cons2(X, cons(Y, Z))) → rcons(negrecip(Y), 2ndspos(N, Z))
pi(X) → 2ndspos(X, from(0))
plus(0, Y) → Y
plus(s(X), Y) → s(plus(X, Y))
times(0, Y) → 0
times(s(X), Y) → plus(Y, times(X, Y))
square(X) → times(X, X)

The set Q consists of the following terms:

from(x0)
2ndspos(0, x0)
2ndspos(s(x0), cons(x1, x2))
2ndspos(s(x0), cons2(x1, cons(x2, x3)))
2ndsneg(0, x0)
2ndsneg(s(x0), cons(x1, x2))
2ndsneg(s(x0), cons2(x1, cons(x2, x3)))
pi(x0)
plus(0, x0)
plus(s(x0), x1)
times(0, x0)
times(s(x0), x1)
square(x0)

(3) DependencyPairsProof (EQUIVALENT transformation)

Using Dependency Pairs [AG00,LPAR04] we result in the following initial DP problem.

(4) Obligation:

Q DP problem:
The TRS P consists of the following rules:

FROM(X) → FROM(s(X))
2NDSPOS(s(N), cons(X, Z)) → 2NDSPOS(s(N), cons2(X, Z))
2NDSPOS(s(N), cons2(X, cons(Y, Z))) → 2NDSNEG(N, Z)
2NDSNEG(s(N), cons(X, Z)) → 2NDSNEG(s(N), cons2(X, Z))
2NDSNEG(s(N), cons2(X, cons(Y, Z))) → 2NDSPOS(N, Z)
PI(X) → 2NDSPOS(X, from(0))
PI(X) → FROM(0)
PLUS(s(X), Y) → PLUS(X, Y)
TIMES(s(X), Y) → PLUS(Y, times(X, Y))
TIMES(s(X), Y) → TIMES(X, Y)
SQUARE(X) → TIMES(X, X)

The TRS R consists of the following rules:

from(X) → cons(X, from(s(X)))
2ndspos(0, Z) → rnil
2ndspos(s(N), cons(X, Z)) → 2ndspos(s(N), cons2(X, Z))
2ndspos(s(N), cons2(X, cons(Y, Z))) → rcons(posrecip(Y), 2ndsneg(N, Z))
2ndsneg(0, Z) → rnil
2ndsneg(s(N), cons(X, Z)) → 2ndsneg(s(N), cons2(X, Z))
2ndsneg(s(N), cons2(X, cons(Y, Z))) → rcons(negrecip(Y), 2ndspos(N, Z))
pi(X) → 2ndspos(X, from(0))
plus(0, Y) → Y
plus(s(X), Y) → s(plus(X, Y))
times(0, Y) → 0
times(s(X), Y) → plus(Y, times(X, Y))
square(X) → times(X, X)

The set Q consists of the following terms:

from(x0)
2ndspos(0, x0)
2ndspos(s(x0), cons(x1, x2))
2ndspos(s(x0), cons2(x1, cons(x2, x3)))
2ndsneg(0, x0)
2ndsneg(s(x0), cons(x1, x2))
2ndsneg(s(x0), cons2(x1, cons(x2, x3)))
pi(x0)
plus(0, x0)
plus(s(x0), x1)
times(0, x0)
times(s(x0), x1)
square(x0)

We have to consider all minimal (P,Q,R)-chains.

(5) DependencyGraphProof (EQUIVALENT transformation)

The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 4 SCCs with 4 less nodes.

(6) Complex Obligation (AND)

(7) Obligation:

Q DP problem:
The TRS P consists of the following rules:

PLUS(s(X), Y) → PLUS(X, Y)

The TRS R consists of the following rules:

from(X) → cons(X, from(s(X)))
2ndspos(0, Z) → rnil
2ndspos(s(N), cons(X, Z)) → 2ndspos(s(N), cons2(X, Z))
2ndspos(s(N), cons2(X, cons(Y, Z))) → rcons(posrecip(Y), 2ndsneg(N, Z))
2ndsneg(0, Z) → rnil
2ndsneg(s(N), cons(X, Z)) → 2ndsneg(s(N), cons2(X, Z))
2ndsneg(s(N), cons2(X, cons(Y, Z))) → rcons(negrecip(Y), 2ndspos(N, Z))
pi(X) → 2ndspos(X, from(0))
plus(0, Y) → Y
plus(s(X), Y) → s(plus(X, Y))
times(0, Y) → 0
times(s(X), Y) → plus(Y, times(X, Y))
square(X) → times(X, X)

The set Q consists of the following terms:

from(x0)
2ndspos(0, x0)
2ndspos(s(x0), cons(x1, x2))
2ndspos(s(x0), cons2(x1, cons(x2, x3)))
2ndsneg(0, x0)
2ndsneg(s(x0), cons(x1, x2))
2ndsneg(s(x0), cons2(x1, cons(x2, x3)))
pi(x0)
plus(0, x0)
plus(s(x0), x1)
times(0, x0)
times(s(x0), x1)
square(x0)

We have to consider all minimal (P,Q,R)-chains.

(8) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


PLUS(s(X), Y) → PLUS(X, Y)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
PLUS(x1, x2)  =  PLUS(x1, x2)
s(x1)  =  s(x1)
from(x1)  =  from(x1)
cons(x1, x2)  =  x1
2ndspos(x1, x2)  =  2ndspos(x1, x2)
0  =  0
rnil  =  rnil
cons2(x1, x2)  =  cons2
rcons(x1, x2)  =  rcons(x1)
posrecip(x1)  =  posrecip
2ndsneg(x1, x2)  =  2ndsneg(x1, x2)
negrecip(x1)  =  negrecip
pi(x1)  =  pi(x1)
plus(x1, x2)  =  plus(x1, x2)
times(x1, x2)  =  times(x1, x2)
square(x1)  =  square(x1)

Recursive path order with status [RPO].
Quasi-Precedence:
PLUS2 > [s1, from1, 2ndspos2, 0, rnil, cons2, rcons1, posrecip, negrecip]
2ndsneg2 > [s1, from1, 2ndspos2, 0, rnil, cons2, rcons1, posrecip, negrecip]
pi1 > [s1, from1, 2ndspos2, 0, rnil, cons2, rcons1, posrecip, negrecip]
square1 > times2 > plus2 > [s1, from1, 2ndspos2, 0, rnil, cons2, rcons1, posrecip, negrecip]

Status:
PLUS2: [1,2]
s1: [1]
from1: multiset
2ndspos2: [2,1]
0: multiset
rnil: multiset
cons2: multiset
rcons1: [1]
posrecip: multiset
2ndsneg2: multiset
negrecip: multiset
pi1: multiset
plus2: [2,1]
times2: multiset
square1: [1]


The following usable rules [FROCOS05] were oriented:

from(X) → cons(X, from(s(X)))
2ndspos(0, Z) → rnil
2ndspos(s(N), cons(X, Z)) → 2ndspos(s(N), cons2(X, Z))
2ndspos(s(N), cons2(X, cons(Y, Z))) → rcons(posrecip(Y), 2ndsneg(N, Z))
2ndsneg(0, Z) → rnil
2ndsneg(s(N), cons(X, Z)) → 2ndsneg(s(N), cons2(X, Z))
2ndsneg(s(N), cons2(X, cons(Y, Z))) → rcons(negrecip(Y), 2ndspos(N, Z))
pi(X) → 2ndspos(X, from(0))
plus(0, Y) → Y
plus(s(X), Y) → s(plus(X, Y))
times(0, Y) → 0
times(s(X), Y) → plus(Y, times(X, Y))
square(X) → times(X, X)

(9) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

from(X) → cons(X, from(s(X)))
2ndspos(0, Z) → rnil
2ndspos(s(N), cons(X, Z)) → 2ndspos(s(N), cons2(X, Z))
2ndspos(s(N), cons2(X, cons(Y, Z))) → rcons(posrecip(Y), 2ndsneg(N, Z))
2ndsneg(0, Z) → rnil
2ndsneg(s(N), cons(X, Z)) → 2ndsneg(s(N), cons2(X, Z))
2ndsneg(s(N), cons2(X, cons(Y, Z))) → rcons(negrecip(Y), 2ndspos(N, Z))
pi(X) → 2ndspos(X, from(0))
plus(0, Y) → Y
plus(s(X), Y) → s(plus(X, Y))
times(0, Y) → 0
times(s(X), Y) → plus(Y, times(X, Y))
square(X) → times(X, X)

The set Q consists of the following terms:

from(x0)
2ndspos(0, x0)
2ndspos(s(x0), cons(x1, x2))
2ndspos(s(x0), cons2(x1, cons(x2, x3)))
2ndsneg(0, x0)
2ndsneg(s(x0), cons(x1, x2))
2ndsneg(s(x0), cons2(x1, cons(x2, x3)))
pi(x0)
plus(0, x0)
plus(s(x0), x1)
times(0, x0)
times(s(x0), x1)
square(x0)

We have to consider all minimal (P,Q,R)-chains.

(10) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(11) TRUE

(12) Obligation:

Q DP problem:
The TRS P consists of the following rules:

TIMES(s(X), Y) → TIMES(X, Y)

The TRS R consists of the following rules:

from(X) → cons(X, from(s(X)))
2ndspos(0, Z) → rnil
2ndspos(s(N), cons(X, Z)) → 2ndspos(s(N), cons2(X, Z))
2ndspos(s(N), cons2(X, cons(Y, Z))) → rcons(posrecip(Y), 2ndsneg(N, Z))
2ndsneg(0, Z) → rnil
2ndsneg(s(N), cons(X, Z)) → 2ndsneg(s(N), cons2(X, Z))
2ndsneg(s(N), cons2(X, cons(Y, Z))) → rcons(negrecip(Y), 2ndspos(N, Z))
pi(X) → 2ndspos(X, from(0))
plus(0, Y) → Y
plus(s(X), Y) → s(plus(X, Y))
times(0, Y) → 0
times(s(X), Y) → plus(Y, times(X, Y))
square(X) → times(X, X)

The set Q consists of the following terms:

from(x0)
2ndspos(0, x0)
2ndspos(s(x0), cons(x1, x2))
2ndspos(s(x0), cons2(x1, cons(x2, x3)))
2ndsneg(0, x0)
2ndsneg(s(x0), cons(x1, x2))
2ndsneg(s(x0), cons2(x1, cons(x2, x3)))
pi(x0)
plus(0, x0)
plus(s(x0), x1)
times(0, x0)
times(s(x0), x1)
square(x0)

We have to consider all minimal (P,Q,R)-chains.

(13) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


TIMES(s(X), Y) → TIMES(X, Y)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
TIMES(x1, x2)  =  TIMES(x1, x2)
s(x1)  =  s(x1)
from(x1)  =  from(x1)
cons(x1, x2)  =  x1
2ndspos(x1, x2)  =  2ndspos(x1, x2)
0  =  0
rnil  =  rnil
cons2(x1, x2)  =  cons2
rcons(x1, x2)  =  rcons(x1)
posrecip(x1)  =  posrecip
2ndsneg(x1, x2)  =  2ndsneg(x1, x2)
negrecip(x1)  =  negrecip
pi(x1)  =  pi(x1)
plus(x1, x2)  =  plus(x1, x2)
times(x1, x2)  =  times(x1, x2)
square(x1)  =  square(x1)

Recursive path order with status [RPO].
Quasi-Precedence:
TIMES2 > [s1, from1, 2ndspos2, 0, rnil, cons2, rcons1, posrecip, negrecip]
2ndsneg2 > [s1, from1, 2ndspos2, 0, rnil, cons2, rcons1, posrecip, negrecip]
pi1 > [s1, from1, 2ndspos2, 0, rnil, cons2, rcons1, posrecip, negrecip]
square1 > times2 > plus2 > [s1, from1, 2ndspos2, 0, rnil, cons2, rcons1, posrecip, negrecip]

Status:
TIMES2: [1,2]
s1: [1]
from1: multiset
2ndspos2: [2,1]
0: multiset
rnil: multiset
cons2: multiset
rcons1: [1]
posrecip: multiset
2ndsneg2: multiset
negrecip: multiset
pi1: multiset
plus2: [2,1]
times2: multiset
square1: [1]


The following usable rules [FROCOS05] were oriented:

from(X) → cons(X, from(s(X)))
2ndspos(0, Z) → rnil
2ndspos(s(N), cons(X, Z)) → 2ndspos(s(N), cons2(X, Z))
2ndspos(s(N), cons2(X, cons(Y, Z))) → rcons(posrecip(Y), 2ndsneg(N, Z))
2ndsneg(0, Z) → rnil
2ndsneg(s(N), cons(X, Z)) → 2ndsneg(s(N), cons2(X, Z))
2ndsneg(s(N), cons2(X, cons(Y, Z))) → rcons(negrecip(Y), 2ndspos(N, Z))
pi(X) → 2ndspos(X, from(0))
plus(0, Y) → Y
plus(s(X), Y) → s(plus(X, Y))
times(0, Y) → 0
times(s(X), Y) → plus(Y, times(X, Y))
square(X) → times(X, X)

(14) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

from(X) → cons(X, from(s(X)))
2ndspos(0, Z) → rnil
2ndspos(s(N), cons(X, Z)) → 2ndspos(s(N), cons2(X, Z))
2ndspos(s(N), cons2(X, cons(Y, Z))) → rcons(posrecip(Y), 2ndsneg(N, Z))
2ndsneg(0, Z) → rnil
2ndsneg(s(N), cons(X, Z)) → 2ndsneg(s(N), cons2(X, Z))
2ndsneg(s(N), cons2(X, cons(Y, Z))) → rcons(negrecip(Y), 2ndspos(N, Z))
pi(X) → 2ndspos(X, from(0))
plus(0, Y) → Y
plus(s(X), Y) → s(plus(X, Y))
times(0, Y) → 0
times(s(X), Y) → plus(Y, times(X, Y))
square(X) → times(X, X)

The set Q consists of the following terms:

from(x0)
2ndspos(0, x0)
2ndspos(s(x0), cons(x1, x2))
2ndspos(s(x0), cons2(x1, cons(x2, x3)))
2ndsneg(0, x0)
2ndsneg(s(x0), cons(x1, x2))
2ndsneg(s(x0), cons2(x1, cons(x2, x3)))
pi(x0)
plus(0, x0)
plus(s(x0), x1)
times(0, x0)
times(s(x0), x1)
square(x0)

We have to consider all minimal (P,Q,R)-chains.

(15) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(16) TRUE

(17) Obligation:

Q DP problem:
The TRS P consists of the following rules:

2NDSPOS(s(N), cons2(X, cons(Y, Z))) → 2NDSNEG(N, Z)
2NDSNEG(s(N), cons(X, Z)) → 2NDSNEG(s(N), cons2(X, Z))
2NDSNEG(s(N), cons2(X, cons(Y, Z))) → 2NDSPOS(N, Z)
2NDSPOS(s(N), cons(X, Z)) → 2NDSPOS(s(N), cons2(X, Z))

The TRS R consists of the following rules:

from(X) → cons(X, from(s(X)))
2ndspos(0, Z) → rnil
2ndspos(s(N), cons(X, Z)) → 2ndspos(s(N), cons2(X, Z))
2ndspos(s(N), cons2(X, cons(Y, Z))) → rcons(posrecip(Y), 2ndsneg(N, Z))
2ndsneg(0, Z) → rnil
2ndsneg(s(N), cons(X, Z)) → 2ndsneg(s(N), cons2(X, Z))
2ndsneg(s(N), cons2(X, cons(Y, Z))) → rcons(negrecip(Y), 2ndspos(N, Z))
pi(X) → 2ndspos(X, from(0))
plus(0, Y) → Y
plus(s(X), Y) → s(plus(X, Y))
times(0, Y) → 0
times(s(X), Y) → plus(Y, times(X, Y))
square(X) → times(X, X)

The set Q consists of the following terms:

from(x0)
2ndspos(0, x0)
2ndspos(s(x0), cons(x1, x2))
2ndspos(s(x0), cons2(x1, cons(x2, x3)))
2ndsneg(0, x0)
2ndsneg(s(x0), cons(x1, x2))
2ndsneg(s(x0), cons2(x1, cons(x2, x3)))
pi(x0)
plus(0, x0)
plus(s(x0), x1)
times(0, x0)
times(s(x0), x1)
square(x0)

We have to consider all minimal (P,Q,R)-chains.

(18) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


2NDSPOS(s(N), cons2(X, cons(Y, Z))) → 2NDSNEG(N, Z)
2NDSNEG(s(N), cons2(X, cons(Y, Z))) → 2NDSPOS(N, Z)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
2NDSPOS(x1, x2)  =  2NDSPOS(x1)
s(x1)  =  s(x1)
cons2(x1, x2)  =  cons2
cons(x1, x2)  =  x1
2NDSNEG(x1, x2)  =  2NDSNEG(x1)
from(x1)  =  from(x1)
2ndspos(x1, x2)  =  2ndspos(x1)
0  =  0
rnil  =  rnil
rcons(x1, x2)  =  rcons(x1, x2)
posrecip(x1)  =  posrecip
2ndsneg(x1, x2)  =  2ndsneg(x1)
negrecip(x1)  =  negrecip
pi(x1)  =  pi(x1)
plus(x1, x2)  =  plus(x1, x2)
times(x1, x2)  =  times(x1, x2)
square(x1)  =  square(x1)

Recursive path order with status [RPO].
Quasi-Precedence:
pi1 > [2NDSPOS1, cons2, 2NDSNEG1, from1, 2ndspos1, 0, rnil, rcons2, posrecip, negrecip]
square1 > times2 > plus2 > s1 > 2ndsneg1 > [2NDSPOS1, cons2, 2NDSNEG1, from1, 2ndspos1, 0, rnil, rcons2, posrecip, negrecip]

Status:
2NDSPOS1: multiset
s1: [1]
cons2: multiset
2NDSNEG1: multiset
from1: multiset
2ndspos1: [1]
0: multiset
rnil: multiset
rcons2: multiset
posrecip: multiset
2ndsneg1: [1]
negrecip: multiset
pi1: multiset
plus2: [2,1]
times2: [1,2]
square1: multiset


The following usable rules [FROCOS05] were oriented:

from(X) → cons(X, from(s(X)))
2ndspos(0, Z) → rnil
2ndspos(s(N), cons(X, Z)) → 2ndspos(s(N), cons2(X, Z))
2ndspos(s(N), cons2(X, cons(Y, Z))) → rcons(posrecip(Y), 2ndsneg(N, Z))
2ndsneg(0, Z) → rnil
2ndsneg(s(N), cons(X, Z)) → 2ndsneg(s(N), cons2(X, Z))
2ndsneg(s(N), cons2(X, cons(Y, Z))) → rcons(negrecip(Y), 2ndspos(N, Z))
pi(X) → 2ndspos(X, from(0))
plus(0, Y) → Y
plus(s(X), Y) → s(plus(X, Y))
times(0, Y) → 0
times(s(X), Y) → plus(Y, times(X, Y))
square(X) → times(X, X)

(19) Obligation:

Q DP problem:
The TRS P consists of the following rules:

2NDSNEG(s(N), cons(X, Z)) → 2NDSNEG(s(N), cons2(X, Z))
2NDSPOS(s(N), cons(X, Z)) → 2NDSPOS(s(N), cons2(X, Z))

The TRS R consists of the following rules:

from(X) → cons(X, from(s(X)))
2ndspos(0, Z) → rnil
2ndspos(s(N), cons(X, Z)) → 2ndspos(s(N), cons2(X, Z))
2ndspos(s(N), cons2(X, cons(Y, Z))) → rcons(posrecip(Y), 2ndsneg(N, Z))
2ndsneg(0, Z) → rnil
2ndsneg(s(N), cons(X, Z)) → 2ndsneg(s(N), cons2(X, Z))
2ndsneg(s(N), cons2(X, cons(Y, Z))) → rcons(negrecip(Y), 2ndspos(N, Z))
pi(X) → 2ndspos(X, from(0))
plus(0, Y) → Y
plus(s(X), Y) → s(plus(X, Y))
times(0, Y) → 0
times(s(X), Y) → plus(Y, times(X, Y))
square(X) → times(X, X)

The set Q consists of the following terms:

from(x0)
2ndspos(0, x0)
2ndspos(s(x0), cons(x1, x2))
2ndspos(s(x0), cons2(x1, cons(x2, x3)))
2ndsneg(0, x0)
2ndsneg(s(x0), cons(x1, x2))
2ndsneg(s(x0), cons2(x1, cons(x2, x3)))
pi(x0)
plus(0, x0)
plus(s(x0), x1)
times(0, x0)
times(s(x0), x1)
square(x0)

We have to consider all minimal (P,Q,R)-chains.

(20) DependencyGraphProof (EQUIVALENT transformation)

The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 0 SCCs with 2 less nodes.

(21) TRUE

(22) Obligation:

Q DP problem:
The TRS P consists of the following rules:

FROM(X) → FROM(s(X))

The TRS R consists of the following rules:

from(X) → cons(X, from(s(X)))
2ndspos(0, Z) → rnil
2ndspos(s(N), cons(X, Z)) → 2ndspos(s(N), cons2(X, Z))
2ndspos(s(N), cons2(X, cons(Y, Z))) → rcons(posrecip(Y), 2ndsneg(N, Z))
2ndsneg(0, Z) → rnil
2ndsneg(s(N), cons(X, Z)) → 2ndsneg(s(N), cons2(X, Z))
2ndsneg(s(N), cons2(X, cons(Y, Z))) → rcons(negrecip(Y), 2ndspos(N, Z))
pi(X) → 2ndspos(X, from(0))
plus(0, Y) → Y
plus(s(X), Y) → s(plus(X, Y))
times(0, Y) → 0
times(s(X), Y) → plus(Y, times(X, Y))
square(X) → times(X, X)

The set Q consists of the following terms:

from(x0)
2ndspos(0, x0)
2ndspos(s(x0), cons(x1, x2))
2ndspos(s(x0), cons2(x1, cons(x2, x3)))
2ndsneg(0, x0)
2ndsneg(s(x0), cons(x1, x2))
2ndsneg(s(x0), cons2(x1, cons(x2, x3)))
pi(x0)
plus(0, x0)
plus(s(x0), x1)
times(0, x0)
times(s(x0), x1)
square(x0)

We have to consider all minimal (P,Q,R)-chains.