0 QTRS
↳1 Overlay + Local Confluence (⇔)
↳2 QTRS
↳3 DependencyPairsProof (⇔)
↳4 QDP
↳5 DependencyGraphProof (⇔)
↳6 AND
↳7 QDP
↳8 QDPOrderProof (⇔)
↳9 QDP
↳10 PisEmptyProof (⇔)
↳11 TRUE
↳12 QDP
↳13 QDPOrderProof (⇔)
↳14 QDP
↳15 PisEmptyProof (⇔)
↳16 TRUE
↳17 QDP
↳18 QDPOrderProof (⇔)
↳19 QDP
↳20 DependencyGraphProof (⇔)
↳21 TRUE
↳22 QDP
from(X) → cons(X, from(s(X)))
2ndspos(0, Z) → rnil
2ndspos(s(N), cons(X, Z)) → 2ndspos(s(N), cons2(X, Z))
2ndspos(s(N), cons2(X, cons(Y, Z))) → rcons(posrecip(Y), 2ndsneg(N, Z))
2ndsneg(0, Z) → rnil
2ndsneg(s(N), cons(X, Z)) → 2ndsneg(s(N), cons2(X, Z))
2ndsneg(s(N), cons2(X, cons(Y, Z))) → rcons(negrecip(Y), 2ndspos(N, Z))
pi(X) → 2ndspos(X, from(0))
plus(0, Y) → Y
plus(s(X), Y) → s(plus(X, Y))
times(0, Y) → 0
times(s(X), Y) → plus(Y, times(X, Y))
square(X) → times(X, X)
from(X) → cons(X, from(s(X)))
2ndspos(0, Z) → rnil
2ndspos(s(N), cons(X, Z)) → 2ndspos(s(N), cons2(X, Z))
2ndspos(s(N), cons2(X, cons(Y, Z))) → rcons(posrecip(Y), 2ndsneg(N, Z))
2ndsneg(0, Z) → rnil
2ndsneg(s(N), cons(X, Z)) → 2ndsneg(s(N), cons2(X, Z))
2ndsneg(s(N), cons2(X, cons(Y, Z))) → rcons(negrecip(Y), 2ndspos(N, Z))
pi(X) → 2ndspos(X, from(0))
plus(0, Y) → Y
plus(s(X), Y) → s(plus(X, Y))
times(0, Y) → 0
times(s(X), Y) → plus(Y, times(X, Y))
square(X) → times(X, X)
from(x0)
2ndspos(0, x0)
2ndspos(s(x0), cons(x1, x2))
2ndspos(s(x0), cons2(x1, cons(x2, x3)))
2ndsneg(0, x0)
2ndsneg(s(x0), cons(x1, x2))
2ndsneg(s(x0), cons2(x1, cons(x2, x3)))
pi(x0)
plus(0, x0)
plus(s(x0), x1)
times(0, x0)
times(s(x0), x1)
square(x0)
FROM(X) → FROM(s(X))
2NDSPOS(s(N), cons(X, Z)) → 2NDSPOS(s(N), cons2(X, Z))
2NDSPOS(s(N), cons2(X, cons(Y, Z))) → 2NDSNEG(N, Z)
2NDSNEG(s(N), cons(X, Z)) → 2NDSNEG(s(N), cons2(X, Z))
2NDSNEG(s(N), cons2(X, cons(Y, Z))) → 2NDSPOS(N, Z)
PI(X) → 2NDSPOS(X, from(0))
PI(X) → FROM(0)
PLUS(s(X), Y) → PLUS(X, Y)
TIMES(s(X), Y) → PLUS(Y, times(X, Y))
TIMES(s(X), Y) → TIMES(X, Y)
SQUARE(X) → TIMES(X, X)
from(X) → cons(X, from(s(X)))
2ndspos(0, Z) → rnil
2ndspos(s(N), cons(X, Z)) → 2ndspos(s(N), cons2(X, Z))
2ndspos(s(N), cons2(X, cons(Y, Z))) → rcons(posrecip(Y), 2ndsneg(N, Z))
2ndsneg(0, Z) → rnil
2ndsneg(s(N), cons(X, Z)) → 2ndsneg(s(N), cons2(X, Z))
2ndsneg(s(N), cons2(X, cons(Y, Z))) → rcons(negrecip(Y), 2ndspos(N, Z))
pi(X) → 2ndspos(X, from(0))
plus(0, Y) → Y
plus(s(X), Y) → s(plus(X, Y))
times(0, Y) → 0
times(s(X), Y) → plus(Y, times(X, Y))
square(X) → times(X, X)
from(x0)
2ndspos(0, x0)
2ndspos(s(x0), cons(x1, x2))
2ndspos(s(x0), cons2(x1, cons(x2, x3)))
2ndsneg(0, x0)
2ndsneg(s(x0), cons(x1, x2))
2ndsneg(s(x0), cons2(x1, cons(x2, x3)))
pi(x0)
plus(0, x0)
plus(s(x0), x1)
times(0, x0)
times(s(x0), x1)
square(x0)
PLUS(s(X), Y) → PLUS(X, Y)
from(X) → cons(X, from(s(X)))
2ndspos(0, Z) → rnil
2ndspos(s(N), cons(X, Z)) → 2ndspos(s(N), cons2(X, Z))
2ndspos(s(N), cons2(X, cons(Y, Z))) → rcons(posrecip(Y), 2ndsneg(N, Z))
2ndsneg(0, Z) → rnil
2ndsneg(s(N), cons(X, Z)) → 2ndsneg(s(N), cons2(X, Z))
2ndsneg(s(N), cons2(X, cons(Y, Z))) → rcons(negrecip(Y), 2ndspos(N, Z))
pi(X) → 2ndspos(X, from(0))
plus(0, Y) → Y
plus(s(X), Y) → s(plus(X, Y))
times(0, Y) → 0
times(s(X), Y) → plus(Y, times(X, Y))
square(X) → times(X, X)
from(x0)
2ndspos(0, x0)
2ndspos(s(x0), cons(x1, x2))
2ndspos(s(x0), cons2(x1, cons(x2, x3)))
2ndsneg(0, x0)
2ndsneg(s(x0), cons(x1, x2))
2ndsneg(s(x0), cons2(x1, cons(x2, x3)))
pi(x0)
plus(0, x0)
plus(s(x0), x1)
times(0, x0)
times(s(x0), x1)
square(x0)
The following pairs can be oriented strictly and are deleted.
The remaining pairs can at least be oriented weakly.
PLUS(s(X), Y) → PLUS(X, Y)
PLUS2 > rcons1
from > [s1, cons, posrecip] > [cons2, negrecip] > rcons1
0 > rnil > rcons1
2ndsneg2 > [s1, cons, posrecip] > [cons2, negrecip] > rcons1
pi1 > rcons1
square1 > times2 > plus2 > [s1, cons, posrecip] > [cons2, negrecip] > rcons1
PLUS2: [1,2]
s1: multiset
from: multiset
cons: []
0: multiset
rnil: multiset
cons2: multiset
rcons1: multiset
posrecip: multiset
2ndsneg2: multiset
negrecip: multiset
pi1: multiset
plus2: [1,2]
times2: [1,2]
square1: [1]
from(X) → cons(X, from(s(X)))
2ndspos(0, Z) → rnil
2ndspos(s(N), cons(X, Z)) → 2ndspos(s(N), cons2(X, Z))
2ndspos(s(N), cons2(X, cons(Y, Z))) → rcons(posrecip(Y), 2ndsneg(N, Z))
2ndsneg(0, Z) → rnil
2ndsneg(s(N), cons(X, Z)) → 2ndsneg(s(N), cons2(X, Z))
2ndsneg(s(N), cons2(X, cons(Y, Z))) → rcons(negrecip(Y), 2ndspos(N, Z))
pi(X) → 2ndspos(X, from(0))
plus(0, Y) → Y
plus(s(X), Y) → s(plus(X, Y))
times(0, Y) → 0
times(s(X), Y) → plus(Y, times(X, Y))
square(X) → times(X, X)
from(X) → cons(X, from(s(X)))
2ndspos(0, Z) → rnil
2ndspos(s(N), cons(X, Z)) → 2ndspos(s(N), cons2(X, Z))
2ndspos(s(N), cons2(X, cons(Y, Z))) → rcons(posrecip(Y), 2ndsneg(N, Z))
2ndsneg(0, Z) → rnil
2ndsneg(s(N), cons(X, Z)) → 2ndsneg(s(N), cons2(X, Z))
2ndsneg(s(N), cons2(X, cons(Y, Z))) → rcons(negrecip(Y), 2ndspos(N, Z))
pi(X) → 2ndspos(X, from(0))
plus(0, Y) → Y
plus(s(X), Y) → s(plus(X, Y))
times(0, Y) → 0
times(s(X), Y) → plus(Y, times(X, Y))
square(X) → times(X, X)
from(x0)
2ndspos(0, x0)
2ndspos(s(x0), cons(x1, x2))
2ndspos(s(x0), cons2(x1, cons(x2, x3)))
2ndsneg(0, x0)
2ndsneg(s(x0), cons(x1, x2))
2ndsneg(s(x0), cons2(x1, cons(x2, x3)))
pi(x0)
plus(0, x0)
plus(s(x0), x1)
times(0, x0)
times(s(x0), x1)
square(x0)
TIMES(s(X), Y) → TIMES(X, Y)
from(X) → cons(X, from(s(X)))
2ndspos(0, Z) → rnil
2ndspos(s(N), cons(X, Z)) → 2ndspos(s(N), cons2(X, Z))
2ndspos(s(N), cons2(X, cons(Y, Z))) → rcons(posrecip(Y), 2ndsneg(N, Z))
2ndsneg(0, Z) → rnil
2ndsneg(s(N), cons(X, Z)) → 2ndsneg(s(N), cons2(X, Z))
2ndsneg(s(N), cons2(X, cons(Y, Z))) → rcons(negrecip(Y), 2ndspos(N, Z))
pi(X) → 2ndspos(X, from(0))
plus(0, Y) → Y
plus(s(X), Y) → s(plus(X, Y))
times(0, Y) → 0
times(s(X), Y) → plus(Y, times(X, Y))
square(X) → times(X, X)
from(x0)
2ndspos(0, x0)
2ndspos(s(x0), cons(x1, x2))
2ndspos(s(x0), cons2(x1, cons(x2, x3)))
2ndsneg(0, x0)
2ndsneg(s(x0), cons(x1, x2))
2ndsneg(s(x0), cons2(x1, cons(x2, x3)))
pi(x0)
plus(0, x0)
plus(s(x0), x1)
times(0, x0)
times(s(x0), x1)
square(x0)
The following pairs can be oriented strictly and are deleted.
The remaining pairs can at least be oriented weakly.
TIMES(s(X), Y) → TIMES(X, Y)
TIMES2 > [0, cons2, negrecip]
pi1 > from1 > s1 > [0, cons2, negrecip]
pi1 > [2ndspos2, posrecip] > [rnil, 2ndsneg] > s1 > [0, cons2, negrecip]
square1 > times2 > plus2 > s1 > [0, cons2, negrecip]
TIMES2: [2,1]
s1: multiset
from1: [1]
2ndspos2: [2,1]
0: multiset
rnil: multiset
cons2: multiset
posrecip: []
2ndsneg: []
negrecip: multiset
pi1: multiset
plus2: [1,2]
times2: [2,1]
square1: multiset
from(X) → cons(X, from(s(X)))
2ndspos(0, Z) → rnil
2ndspos(s(N), cons(X, Z)) → 2ndspos(s(N), cons2(X, Z))
2ndspos(s(N), cons2(X, cons(Y, Z))) → rcons(posrecip(Y), 2ndsneg(N, Z))
2ndsneg(0, Z) → rnil
2ndsneg(s(N), cons(X, Z)) → 2ndsneg(s(N), cons2(X, Z))
2ndsneg(s(N), cons2(X, cons(Y, Z))) → rcons(negrecip(Y), 2ndspos(N, Z))
pi(X) → 2ndspos(X, from(0))
plus(0, Y) → Y
plus(s(X), Y) → s(plus(X, Y))
times(0, Y) → 0
times(s(X), Y) → plus(Y, times(X, Y))
square(X) → times(X, X)
from(X) → cons(X, from(s(X)))
2ndspos(0, Z) → rnil
2ndspos(s(N), cons(X, Z)) → 2ndspos(s(N), cons2(X, Z))
2ndspos(s(N), cons2(X, cons(Y, Z))) → rcons(posrecip(Y), 2ndsneg(N, Z))
2ndsneg(0, Z) → rnil
2ndsneg(s(N), cons(X, Z)) → 2ndsneg(s(N), cons2(X, Z))
2ndsneg(s(N), cons2(X, cons(Y, Z))) → rcons(negrecip(Y), 2ndspos(N, Z))
pi(X) → 2ndspos(X, from(0))
plus(0, Y) → Y
plus(s(X), Y) → s(plus(X, Y))
times(0, Y) → 0
times(s(X), Y) → plus(Y, times(X, Y))
square(X) → times(X, X)
from(x0)
2ndspos(0, x0)
2ndspos(s(x0), cons(x1, x2))
2ndspos(s(x0), cons2(x1, cons(x2, x3)))
2ndsneg(0, x0)
2ndsneg(s(x0), cons(x1, x2))
2ndsneg(s(x0), cons2(x1, cons(x2, x3)))
pi(x0)
plus(0, x0)
plus(s(x0), x1)
times(0, x0)
times(s(x0), x1)
square(x0)
2NDSPOS(s(N), cons2(X, cons(Y, Z))) → 2NDSNEG(N, Z)
2NDSNEG(s(N), cons(X, Z)) → 2NDSNEG(s(N), cons2(X, Z))
2NDSNEG(s(N), cons2(X, cons(Y, Z))) → 2NDSPOS(N, Z)
2NDSPOS(s(N), cons(X, Z)) → 2NDSPOS(s(N), cons2(X, Z))
from(X) → cons(X, from(s(X)))
2ndspos(0, Z) → rnil
2ndspos(s(N), cons(X, Z)) → 2ndspos(s(N), cons2(X, Z))
2ndspos(s(N), cons2(X, cons(Y, Z))) → rcons(posrecip(Y), 2ndsneg(N, Z))
2ndsneg(0, Z) → rnil
2ndsneg(s(N), cons(X, Z)) → 2ndsneg(s(N), cons2(X, Z))
2ndsneg(s(N), cons2(X, cons(Y, Z))) → rcons(negrecip(Y), 2ndspos(N, Z))
pi(X) → 2ndspos(X, from(0))
plus(0, Y) → Y
plus(s(X), Y) → s(plus(X, Y))
times(0, Y) → 0
times(s(X), Y) → plus(Y, times(X, Y))
square(X) → times(X, X)
from(x0)
2ndspos(0, x0)
2ndspos(s(x0), cons(x1, x2))
2ndspos(s(x0), cons2(x1, cons(x2, x3)))
2ndsneg(0, x0)
2ndsneg(s(x0), cons(x1, x2))
2ndsneg(s(x0), cons2(x1, cons(x2, x3)))
pi(x0)
plus(0, x0)
plus(s(x0), x1)
times(0, x0)
times(s(x0), x1)
square(x0)
The following pairs can be oriented strictly and are deleted.
The remaining pairs can at least be oriented weakly.
2NDSPOS(s(N), cons2(X, cons(Y, Z))) → 2NDSNEG(N, Z)
2NDSNEG(s(N), cons2(X, cons(Y, Z))) → 2NDSPOS(N, Z)
[2NDSPOS2, 2NDSNEG2] > [s1, rnil, 2ndsneg1]
from > [s1, rnil, 2ndsneg1]
0 > [s1, rnil, 2ndsneg1]
posrecip > [s1, rnil, 2ndsneg1]
negrecip > [s1, rnil, 2ndsneg1]
pi1 > [s1, rnil, 2ndsneg1]
square1 > times2 > plus2 > [s1, rnil, 2ndsneg1]
2NDSPOS2: [2,1]
s1: multiset
2NDSNEG2: [2,1]
from: multiset
0: multiset
rnil: multiset
posrecip: multiset
2ndsneg1: multiset
negrecip: []
pi1: [1]
plus2: multiset
times2: [2,1]
square1: multiset
from(X) → cons(X, from(s(X)))
2ndspos(0, Z) → rnil
2ndspos(s(N), cons(X, Z)) → 2ndspos(s(N), cons2(X, Z))
2ndspos(s(N), cons2(X, cons(Y, Z))) → rcons(posrecip(Y), 2ndsneg(N, Z))
2ndsneg(0, Z) → rnil
2ndsneg(s(N), cons(X, Z)) → 2ndsneg(s(N), cons2(X, Z))
2ndsneg(s(N), cons2(X, cons(Y, Z))) → rcons(negrecip(Y), 2ndspos(N, Z))
pi(X) → 2ndspos(X, from(0))
plus(0, Y) → Y
plus(s(X), Y) → s(plus(X, Y))
times(0, Y) → 0
times(s(X), Y) → plus(Y, times(X, Y))
square(X) → times(X, X)
2NDSNEG(s(N), cons(X, Z)) → 2NDSNEG(s(N), cons2(X, Z))
2NDSPOS(s(N), cons(X, Z)) → 2NDSPOS(s(N), cons2(X, Z))
from(X) → cons(X, from(s(X)))
2ndspos(0, Z) → rnil
2ndspos(s(N), cons(X, Z)) → 2ndspos(s(N), cons2(X, Z))
2ndspos(s(N), cons2(X, cons(Y, Z))) → rcons(posrecip(Y), 2ndsneg(N, Z))
2ndsneg(0, Z) → rnil
2ndsneg(s(N), cons(X, Z)) → 2ndsneg(s(N), cons2(X, Z))
2ndsneg(s(N), cons2(X, cons(Y, Z))) → rcons(negrecip(Y), 2ndspos(N, Z))
pi(X) → 2ndspos(X, from(0))
plus(0, Y) → Y
plus(s(X), Y) → s(plus(X, Y))
times(0, Y) → 0
times(s(X), Y) → plus(Y, times(X, Y))
square(X) → times(X, X)
from(x0)
2ndspos(0, x0)
2ndspos(s(x0), cons(x1, x2))
2ndspos(s(x0), cons2(x1, cons(x2, x3)))
2ndsneg(0, x0)
2ndsneg(s(x0), cons(x1, x2))
2ndsneg(s(x0), cons2(x1, cons(x2, x3)))
pi(x0)
plus(0, x0)
plus(s(x0), x1)
times(0, x0)
times(s(x0), x1)
square(x0)
FROM(X) → FROM(s(X))
from(X) → cons(X, from(s(X)))
2ndspos(0, Z) → rnil
2ndspos(s(N), cons(X, Z)) → 2ndspos(s(N), cons2(X, Z))
2ndspos(s(N), cons2(X, cons(Y, Z))) → rcons(posrecip(Y), 2ndsneg(N, Z))
2ndsneg(0, Z) → rnil
2ndsneg(s(N), cons(X, Z)) → 2ndsneg(s(N), cons2(X, Z))
2ndsneg(s(N), cons2(X, cons(Y, Z))) → rcons(negrecip(Y), 2ndspos(N, Z))
pi(X) → 2ndspos(X, from(0))
plus(0, Y) → Y
plus(s(X), Y) → s(plus(X, Y))
times(0, Y) → 0
times(s(X), Y) → plus(Y, times(X, Y))
square(X) → times(X, X)
from(x0)
2ndspos(0, x0)
2ndspos(s(x0), cons(x1, x2))
2ndspos(s(x0), cons2(x1, cons(x2, x3)))
2ndsneg(0, x0)
2ndsneg(s(x0), cons(x1, x2))
2ndsneg(s(x0), cons2(x1, cons(x2, x3)))
pi(x0)
plus(0, x0)
plus(s(x0), x1)
times(0, x0)
times(s(x0), x1)
square(x0)