0 QTRS
↳1 Overlay + Local Confluence (⇔)
↳2 QTRS
↳3 DependencyPairsProof (⇔)
↳4 QDP
↳5 DependencyGraphProof (⇔)
↳6 AND
↳7 QDP
↳8 QDP
↳9 QDPOrderProof (⇔)
↳10 QDP
↳11 PisEmptyProof (⇔)
↳12 TRUE
↳13 QDP
↳14 QDPOrderProof (⇔)
↳15 QDP
↳16 PisEmptyProof (⇔)
↳17 TRUE
filter(cons(X, Y), 0, M) → cons(0, filter(Y, M, M))
filter(cons(X, Y), s(N), M) → cons(X, filter(Y, N, M))
sieve(cons(0, Y)) → cons(0, sieve(Y))
sieve(cons(s(N), Y)) → cons(s(N), sieve(filter(Y, N, N)))
nats(N) → cons(N, nats(s(N)))
zprimes → sieve(nats(s(s(0))))
filter(cons(X, Y), 0, M) → cons(0, filter(Y, M, M))
filter(cons(X, Y), s(N), M) → cons(X, filter(Y, N, M))
sieve(cons(0, Y)) → cons(0, sieve(Y))
sieve(cons(s(N), Y)) → cons(s(N), sieve(filter(Y, N, N)))
nats(N) → cons(N, nats(s(N)))
zprimes → sieve(nats(s(s(0))))
filter(cons(x0, x1), 0, x2)
filter(cons(x0, x1), s(x2), x3)
sieve(cons(0, x0))
sieve(cons(s(x0), x1))
nats(x0)
zprimes
FILTER(cons(X, Y), 0, M) → FILTER(Y, M, M)
FILTER(cons(X, Y), s(N), M) → FILTER(Y, N, M)
SIEVE(cons(0, Y)) → SIEVE(Y)
SIEVE(cons(s(N), Y)) → SIEVE(filter(Y, N, N))
SIEVE(cons(s(N), Y)) → FILTER(Y, N, N)
NATS(N) → NATS(s(N))
ZPRIMES → SIEVE(nats(s(s(0))))
ZPRIMES → NATS(s(s(0)))
filter(cons(X, Y), 0, M) → cons(0, filter(Y, M, M))
filter(cons(X, Y), s(N), M) → cons(X, filter(Y, N, M))
sieve(cons(0, Y)) → cons(0, sieve(Y))
sieve(cons(s(N), Y)) → cons(s(N), sieve(filter(Y, N, N)))
nats(N) → cons(N, nats(s(N)))
zprimes → sieve(nats(s(s(0))))
filter(cons(x0, x1), 0, x2)
filter(cons(x0, x1), s(x2), x3)
sieve(cons(0, x0))
sieve(cons(s(x0), x1))
nats(x0)
zprimes
NATS(N) → NATS(s(N))
filter(cons(X, Y), 0, M) → cons(0, filter(Y, M, M))
filter(cons(X, Y), s(N), M) → cons(X, filter(Y, N, M))
sieve(cons(0, Y)) → cons(0, sieve(Y))
sieve(cons(s(N), Y)) → cons(s(N), sieve(filter(Y, N, N)))
nats(N) → cons(N, nats(s(N)))
zprimes → sieve(nats(s(s(0))))
filter(cons(x0, x1), 0, x2)
filter(cons(x0, x1), s(x2), x3)
sieve(cons(0, x0))
sieve(cons(s(x0), x1))
nats(x0)
zprimes
FILTER(cons(X, Y), s(N), M) → FILTER(Y, N, M)
FILTER(cons(X, Y), 0, M) → FILTER(Y, M, M)
filter(cons(X, Y), 0, M) → cons(0, filter(Y, M, M))
filter(cons(X, Y), s(N), M) → cons(X, filter(Y, N, M))
sieve(cons(0, Y)) → cons(0, sieve(Y))
sieve(cons(s(N), Y)) → cons(s(N), sieve(filter(Y, N, N)))
nats(N) → cons(N, nats(s(N)))
zprimes → sieve(nats(s(s(0))))
filter(cons(x0, x1), 0, x2)
filter(cons(x0, x1), s(x2), x3)
sieve(cons(0, x0))
sieve(cons(s(x0), x1))
nats(x0)
zprimes
The following pairs can be oriented strictly and are deleted.
The remaining pairs can at least be oriented weakly.
FILTER(cons(X, Y), s(N), M) → FILTER(Y, N, M)
FILTER(cons(X, Y), 0, M) → FILTER(Y, M, M)
0 > [FILTER2, cons2]
filter(cons(X, Y), 0, M) → cons(0, filter(Y, M, M))
filter(cons(X, Y), s(N), M) → cons(X, filter(Y, N, M))
sieve(cons(0, Y)) → cons(0, sieve(Y))
sieve(cons(s(N), Y)) → cons(s(N), sieve(filter(Y, N, N)))
nats(N) → cons(N, nats(s(N)))
zprimes → sieve(nats(s(s(0))))
filter(cons(x0, x1), 0, x2)
filter(cons(x0, x1), s(x2), x3)
sieve(cons(0, x0))
sieve(cons(s(x0), x1))
nats(x0)
zprimes
SIEVE(cons(s(N), Y)) → SIEVE(filter(Y, N, N))
SIEVE(cons(0, Y)) → SIEVE(Y)
filter(cons(X, Y), 0, M) → cons(0, filter(Y, M, M))
filter(cons(X, Y), s(N), M) → cons(X, filter(Y, N, M))
sieve(cons(0, Y)) → cons(0, sieve(Y))
sieve(cons(s(N), Y)) → cons(s(N), sieve(filter(Y, N, N)))
nats(N) → cons(N, nats(s(N)))
zprimes → sieve(nats(s(s(0))))
filter(cons(x0, x1), 0, x2)
filter(cons(x0, x1), s(x2), x3)
sieve(cons(0, x0))
sieve(cons(s(x0), x1))
nats(x0)
zprimes
The following pairs can be oriented strictly and are deleted.
The remaining pairs can at least be oriented weakly.
SIEVE(cons(s(N), Y)) → SIEVE(filter(Y, N, N))
SIEVE(cons(0, Y)) → SIEVE(Y)
[cons1, 0] > SIEVE1
filter(cons(X, Y), 0, M) → cons(0, filter(Y, M, M))
filter(cons(X, Y), s(N), M) → cons(X, filter(Y, N, M))
filter(cons(X, Y), 0, M) → cons(0, filter(Y, M, M))
filter(cons(X, Y), s(N), M) → cons(X, filter(Y, N, M))
sieve(cons(0, Y)) → cons(0, sieve(Y))
sieve(cons(s(N), Y)) → cons(s(N), sieve(filter(Y, N, N)))
nats(N) → cons(N, nats(s(N)))
zprimes → sieve(nats(s(s(0))))
filter(cons(x0, x1), 0, x2)
filter(cons(x0, x1), s(x2), x3)
sieve(cons(0, x0))
sieve(cons(s(x0), x1))
nats(x0)
zprimes