(0) Obligation:

Q restricted rewrite system:
The TRS R consists of the following rules:

filter(cons(X, Y), 0, M) → cons(0, filter(Y, M, M))
filter(cons(X, Y), s(N), M) → cons(X, filter(Y, N, M))
sieve(cons(0, Y)) → cons(0, sieve(Y))
sieve(cons(s(N), Y)) → cons(s(N), sieve(filter(Y, N, N)))
nats(N) → cons(N, nats(s(N)))
zprimessieve(nats(s(s(0))))

Q is empty.

(1) Overlay + Local Confluence (EQUIVALENT transformation)

The TRS is overlay and locally confluent. By [NOC] we can switch to innermost.

(2) Obligation:

Q restricted rewrite system:
The TRS R consists of the following rules:

filter(cons(X, Y), 0, M) → cons(0, filter(Y, M, M))
filter(cons(X, Y), s(N), M) → cons(X, filter(Y, N, M))
sieve(cons(0, Y)) → cons(0, sieve(Y))
sieve(cons(s(N), Y)) → cons(s(N), sieve(filter(Y, N, N)))
nats(N) → cons(N, nats(s(N)))
zprimessieve(nats(s(s(0))))

The set Q consists of the following terms:

filter(cons(x0, x1), 0, x2)
filter(cons(x0, x1), s(x2), x3)
sieve(cons(0, x0))
sieve(cons(s(x0), x1))
nats(x0)
zprimes

(3) DependencyPairsProof (EQUIVALENT transformation)

Using Dependency Pairs [AG00,LPAR04] we result in the following initial DP problem.

(4) Obligation:

Q DP problem:
The TRS P consists of the following rules:

FILTER(cons(X, Y), 0, M) → FILTER(Y, M, M)
FILTER(cons(X, Y), s(N), M) → FILTER(Y, N, M)
SIEVE(cons(0, Y)) → SIEVE(Y)
SIEVE(cons(s(N), Y)) → SIEVE(filter(Y, N, N))
SIEVE(cons(s(N), Y)) → FILTER(Y, N, N)
NATS(N) → NATS(s(N))
ZPRIMESSIEVE(nats(s(s(0))))
ZPRIMESNATS(s(s(0)))

The TRS R consists of the following rules:

filter(cons(X, Y), 0, M) → cons(0, filter(Y, M, M))
filter(cons(X, Y), s(N), M) → cons(X, filter(Y, N, M))
sieve(cons(0, Y)) → cons(0, sieve(Y))
sieve(cons(s(N), Y)) → cons(s(N), sieve(filter(Y, N, N)))
nats(N) → cons(N, nats(s(N)))
zprimessieve(nats(s(s(0))))

The set Q consists of the following terms:

filter(cons(x0, x1), 0, x2)
filter(cons(x0, x1), s(x2), x3)
sieve(cons(0, x0))
sieve(cons(s(x0), x1))
nats(x0)
zprimes

We have to consider all minimal (P,Q,R)-chains.

(5) DependencyGraphProof (EQUIVALENT transformation)

The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 3 SCCs with 3 less nodes.

(6) Complex Obligation (AND)

(7) Obligation:

Q DP problem:
The TRS P consists of the following rules:

NATS(N) → NATS(s(N))

The TRS R consists of the following rules:

filter(cons(X, Y), 0, M) → cons(0, filter(Y, M, M))
filter(cons(X, Y), s(N), M) → cons(X, filter(Y, N, M))
sieve(cons(0, Y)) → cons(0, sieve(Y))
sieve(cons(s(N), Y)) → cons(s(N), sieve(filter(Y, N, N)))
nats(N) → cons(N, nats(s(N)))
zprimessieve(nats(s(s(0))))

The set Q consists of the following terms:

filter(cons(x0, x1), 0, x2)
filter(cons(x0, x1), s(x2), x3)
sieve(cons(0, x0))
sieve(cons(s(x0), x1))
nats(x0)
zprimes

We have to consider all minimal (P,Q,R)-chains.

(8) Obligation:

Q DP problem:
The TRS P consists of the following rules:

FILTER(cons(X, Y), s(N), M) → FILTER(Y, N, M)
FILTER(cons(X, Y), 0, M) → FILTER(Y, M, M)

The TRS R consists of the following rules:

filter(cons(X, Y), 0, M) → cons(0, filter(Y, M, M))
filter(cons(X, Y), s(N), M) → cons(X, filter(Y, N, M))
sieve(cons(0, Y)) → cons(0, sieve(Y))
sieve(cons(s(N), Y)) → cons(s(N), sieve(filter(Y, N, N)))
nats(N) → cons(N, nats(s(N)))
zprimessieve(nats(s(s(0))))

The set Q consists of the following terms:

filter(cons(x0, x1), 0, x2)
filter(cons(x0, x1), s(x2), x3)
sieve(cons(0, x0))
sieve(cons(s(x0), x1))
nats(x0)
zprimes

We have to consider all minimal (P,Q,R)-chains.

(9) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


FILTER(cons(X, Y), s(N), M) → FILTER(Y, N, M)
FILTER(cons(X, Y), 0, M) → FILTER(Y, M, M)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
FILTER(x1, x2, x3)  =  x1
cons(x1, x2)  =  cons(x1, x2)
s(x1)  =  x1
0  =  0

Recursive path order with status [RPO].
Quasi-Precedence:
trivial

Status:
cons2: multiset
0: multiset


The following usable rules [FROCOS05] were oriented: none

(10) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

filter(cons(X, Y), 0, M) → cons(0, filter(Y, M, M))
filter(cons(X, Y), s(N), M) → cons(X, filter(Y, N, M))
sieve(cons(0, Y)) → cons(0, sieve(Y))
sieve(cons(s(N), Y)) → cons(s(N), sieve(filter(Y, N, N)))
nats(N) → cons(N, nats(s(N)))
zprimessieve(nats(s(s(0))))

The set Q consists of the following terms:

filter(cons(x0, x1), 0, x2)
filter(cons(x0, x1), s(x2), x3)
sieve(cons(0, x0))
sieve(cons(s(x0), x1))
nats(x0)
zprimes

We have to consider all minimal (P,Q,R)-chains.

(11) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(12) TRUE

(13) Obligation:

Q DP problem:
The TRS P consists of the following rules:

SIEVE(cons(s(N), Y)) → SIEVE(filter(Y, N, N))
SIEVE(cons(0, Y)) → SIEVE(Y)

The TRS R consists of the following rules:

filter(cons(X, Y), 0, M) → cons(0, filter(Y, M, M))
filter(cons(X, Y), s(N), M) → cons(X, filter(Y, N, M))
sieve(cons(0, Y)) → cons(0, sieve(Y))
sieve(cons(s(N), Y)) → cons(s(N), sieve(filter(Y, N, N)))
nats(N) → cons(N, nats(s(N)))
zprimessieve(nats(s(s(0))))

The set Q consists of the following terms:

filter(cons(x0, x1), 0, x2)
filter(cons(x0, x1), s(x2), x3)
sieve(cons(0, x0))
sieve(cons(s(x0), x1))
nats(x0)
zprimes

We have to consider all minimal (P,Q,R)-chains.

(14) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


SIEVE(cons(0, Y)) → SIEVE(Y)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
SIEVE(x1)  =  SIEVE(x1)
cons(x1, x2)  =  cons(x2)
s(x1)  =  s
filter(x1, x2, x3)  =  filter(x1)
0  =  0

Recursive path order with status [RPO].
Quasi-Precedence:
[cons1, filter1, 0] > [SIEVE1, s]

Status:
SIEVE1: multiset
cons1: [1]
filter1: [1]
s: multiset
0: multiset


The following usable rules [FROCOS05] were oriented:

filter(cons(X, Y), s(N), M) → cons(X, filter(Y, N, M))
filter(cons(X, Y), 0, M) → cons(0, filter(Y, M, M))

(15) Obligation:

Q DP problem:
The TRS P consists of the following rules:

SIEVE(cons(s(N), Y)) → SIEVE(filter(Y, N, N))

The TRS R consists of the following rules:

filter(cons(X, Y), 0, M) → cons(0, filter(Y, M, M))
filter(cons(X, Y), s(N), M) → cons(X, filter(Y, N, M))
sieve(cons(0, Y)) → cons(0, sieve(Y))
sieve(cons(s(N), Y)) → cons(s(N), sieve(filter(Y, N, N)))
nats(N) → cons(N, nats(s(N)))
zprimessieve(nats(s(s(0))))

The set Q consists of the following terms:

filter(cons(x0, x1), 0, x2)
filter(cons(x0, x1), s(x2), x3)
sieve(cons(0, x0))
sieve(cons(s(x0), x1))
nats(x0)
zprimes

We have to consider all minimal (P,Q,R)-chains.

(16) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


SIEVE(cons(s(N), Y)) → SIEVE(filter(Y, N, N))
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
SIEVE(x1)  =  SIEVE(x1)
cons(x1, x2)  =  cons(x2)
s(x1)  =  s
filter(x1, x2, x3)  =  x1
0  =  0

Recursive path order with status [RPO].
Quasi-Precedence:
[SIEVE1, cons1, s] > 0

Status:
SIEVE1: multiset
cons1: multiset
s: multiset
0: multiset


The following usable rules [FROCOS05] were oriented:

filter(cons(X, Y), s(N), M) → cons(X, filter(Y, N, M))
filter(cons(X, Y), 0, M) → cons(0, filter(Y, M, M))

(17) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

filter(cons(X, Y), 0, M) → cons(0, filter(Y, M, M))
filter(cons(X, Y), s(N), M) → cons(X, filter(Y, N, M))
sieve(cons(0, Y)) → cons(0, sieve(Y))
sieve(cons(s(N), Y)) → cons(s(N), sieve(filter(Y, N, N)))
nats(N) → cons(N, nats(s(N)))
zprimessieve(nats(s(s(0))))

The set Q consists of the following terms:

filter(cons(x0, x1), 0, x2)
filter(cons(x0, x1), s(x2), x3)
sieve(cons(0, x0))
sieve(cons(s(x0), x1))
nats(x0)
zprimes

We have to consider all minimal (P,Q,R)-chains.

(18) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(19) TRUE