0 QTRS
↳1 Overlay + Local Confluence (⇔)
↳2 QTRS
↳3 DependencyPairsProof (⇔)
↳4 QDP
↳5 DependencyGraphProof (⇔)
↳6 AND
↳7 QDP
↳8 QDPOrderProof (⇔)
↳9 QDP
↳10 PisEmptyProof (⇔)
↳11 TRUE
↳12 QDP
↳13 QDPOrderProof (⇔)
↳14 QDP
↳15 PisEmptyProof (⇔)
↳16 TRUE
↳17 QDP
from(X) → cons(X, from(s(X)))
head(cons(X, XS)) → X
2nd(cons(X, XS)) → head(XS)
take(0, XS) → nil
take(s(N), cons(X, XS)) → cons(X, take(N, XS))
sel(0, cons(X, XS)) → X
sel(s(N), cons(X, XS)) → sel(N, XS)
from(X) → cons(X, from(s(X)))
head(cons(X, XS)) → X
2nd(cons(X, XS)) → head(XS)
take(0, XS) → nil
take(s(N), cons(X, XS)) → cons(X, take(N, XS))
sel(0, cons(X, XS)) → X
sel(s(N), cons(X, XS)) → sel(N, XS)
from(x0)
head(cons(x0, x1))
2nd(cons(x0, x1))
take(0, x0)
take(s(x0), cons(x1, x2))
sel(0, cons(x0, x1))
sel(s(x0), cons(x1, x2))
FROM(X) → FROM(s(X))
2ND(cons(X, XS)) → HEAD(XS)
TAKE(s(N), cons(X, XS)) → TAKE(N, XS)
SEL(s(N), cons(X, XS)) → SEL(N, XS)
from(X) → cons(X, from(s(X)))
head(cons(X, XS)) → X
2nd(cons(X, XS)) → head(XS)
take(0, XS) → nil
take(s(N), cons(X, XS)) → cons(X, take(N, XS))
sel(0, cons(X, XS)) → X
sel(s(N), cons(X, XS)) → sel(N, XS)
from(x0)
head(cons(x0, x1))
2nd(cons(x0, x1))
take(0, x0)
take(s(x0), cons(x1, x2))
sel(0, cons(x0, x1))
sel(s(x0), cons(x1, x2))
SEL(s(N), cons(X, XS)) → SEL(N, XS)
from(X) → cons(X, from(s(X)))
head(cons(X, XS)) → X
2nd(cons(X, XS)) → head(XS)
take(0, XS) → nil
take(s(N), cons(X, XS)) → cons(X, take(N, XS))
sel(0, cons(X, XS)) → X
sel(s(N), cons(X, XS)) → sel(N, XS)
from(x0)
head(cons(x0, x1))
2nd(cons(x0, x1))
take(0, x0)
take(s(x0), cons(x1, x2))
sel(0, cons(x0, x1))
sel(s(x0), cons(x1, x2))
The following pairs can be oriented strictly and are deleted.
The remaining pairs can at least be oriented weakly.
SEL(s(N), cons(X, XS)) → SEL(N, XS)
trivial
SEL2: multiset
s1: multiset
cons1: multiset
from(X) → cons(X, from(s(X)))
head(cons(X, XS)) → X
2nd(cons(X, XS)) → head(XS)
take(0, XS) → nil
take(s(N), cons(X, XS)) → cons(X, take(N, XS))
sel(0, cons(X, XS)) → X
sel(s(N), cons(X, XS)) → sel(N, XS)
from(x0)
head(cons(x0, x1))
2nd(cons(x0, x1))
take(0, x0)
take(s(x0), cons(x1, x2))
sel(0, cons(x0, x1))
sel(s(x0), cons(x1, x2))
TAKE(s(N), cons(X, XS)) → TAKE(N, XS)
from(X) → cons(X, from(s(X)))
head(cons(X, XS)) → X
2nd(cons(X, XS)) → head(XS)
take(0, XS) → nil
take(s(N), cons(X, XS)) → cons(X, take(N, XS))
sel(0, cons(X, XS)) → X
sel(s(N), cons(X, XS)) → sel(N, XS)
from(x0)
head(cons(x0, x1))
2nd(cons(x0, x1))
take(0, x0)
take(s(x0), cons(x1, x2))
sel(0, cons(x0, x1))
sel(s(x0), cons(x1, x2))
The following pairs can be oriented strictly and are deleted.
The remaining pairs can at least be oriented weakly.
TAKE(s(N), cons(X, XS)) → TAKE(N, XS)
trivial
TAKE2: multiset
s1: multiset
cons1: multiset
from(X) → cons(X, from(s(X)))
head(cons(X, XS)) → X
2nd(cons(X, XS)) → head(XS)
take(0, XS) → nil
take(s(N), cons(X, XS)) → cons(X, take(N, XS))
sel(0, cons(X, XS)) → X
sel(s(N), cons(X, XS)) → sel(N, XS)
from(x0)
head(cons(x0, x1))
2nd(cons(x0, x1))
take(0, x0)
take(s(x0), cons(x1, x2))
sel(0, cons(x0, x1))
sel(s(x0), cons(x1, x2))
FROM(X) → FROM(s(X))
from(X) → cons(X, from(s(X)))
head(cons(X, XS)) → X
2nd(cons(X, XS)) → head(XS)
take(0, XS) → nil
take(s(N), cons(X, XS)) → cons(X, take(N, XS))
sel(0, cons(X, XS)) → X
sel(s(N), cons(X, XS)) → sel(N, XS)
from(x0)
head(cons(x0, x1))
2nd(cons(x0, x1))
take(0, x0)
take(s(x0), cons(x1, x2))
sel(0, cons(x0, x1))
sel(s(x0), cons(x1, x2))