(0) Obligation:

Q restricted rewrite system:
The TRS R consists of the following rules:

f(X) → cons(X, f(g(X)))
g(0) → s(0)
g(s(X)) → s(s(g(X)))
sel(0, cons(X, Y)) → X
sel(s(X), cons(Y, Z)) → sel(X, Z)

Q is empty.

(1) Overlay + Local Confluence (EQUIVALENT transformation)

The TRS is overlay and locally confluent. By [NOC] we can switch to innermost.

(2) Obligation:

Q restricted rewrite system:
The TRS R consists of the following rules:

f(X) → cons(X, f(g(X)))
g(0) → s(0)
g(s(X)) → s(s(g(X)))
sel(0, cons(X, Y)) → X
sel(s(X), cons(Y, Z)) → sel(X, Z)

The set Q consists of the following terms:

f(x0)
g(0)
g(s(x0))
sel(0, cons(x0, x1))
sel(s(x0), cons(x1, x2))

(3) DependencyPairsProof (EQUIVALENT transformation)

Using Dependency Pairs [AG00,LPAR04] we result in the following initial DP problem.

(4) Obligation:

Q DP problem:
The TRS P consists of the following rules:

F(X) → F(g(X))
F(X) → G(X)
G(s(X)) → G(X)
SEL(s(X), cons(Y, Z)) → SEL(X, Z)

The TRS R consists of the following rules:

f(X) → cons(X, f(g(X)))
g(0) → s(0)
g(s(X)) → s(s(g(X)))
sel(0, cons(X, Y)) → X
sel(s(X), cons(Y, Z)) → sel(X, Z)

The set Q consists of the following terms:

f(x0)
g(0)
g(s(x0))
sel(0, cons(x0, x1))
sel(s(x0), cons(x1, x2))

We have to consider all minimal (P,Q,R)-chains.

(5) DependencyGraphProof (EQUIVALENT transformation)

The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 3 SCCs with 1 less node.

(6) Complex Obligation (AND)

(7) Obligation:

Q DP problem:
The TRS P consists of the following rules:

SEL(s(X), cons(Y, Z)) → SEL(X, Z)

The TRS R consists of the following rules:

f(X) → cons(X, f(g(X)))
g(0) → s(0)
g(s(X)) → s(s(g(X)))
sel(0, cons(X, Y)) → X
sel(s(X), cons(Y, Z)) → sel(X, Z)

The set Q consists of the following terms:

f(x0)
g(0)
g(s(x0))
sel(0, cons(x0, x1))
sel(s(x0), cons(x1, x2))

We have to consider all minimal (P,Q,R)-chains.

(8) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


SEL(s(X), cons(Y, Z)) → SEL(X, Z)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
SEL(x1, x2)  =  SEL(x2)
s(x1)  =  s(x1)
cons(x1, x2)  =  cons(x2)

Recursive Path Order [RPO].
Precedence:
s1 > [SEL1, cons1]


The following usable rules [FROCOS05] were oriented: none

(9) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

f(X) → cons(X, f(g(X)))
g(0) → s(0)
g(s(X)) → s(s(g(X)))
sel(0, cons(X, Y)) → X
sel(s(X), cons(Y, Z)) → sel(X, Z)

The set Q consists of the following terms:

f(x0)
g(0)
g(s(x0))
sel(0, cons(x0, x1))
sel(s(x0), cons(x1, x2))

We have to consider all minimal (P,Q,R)-chains.

(10) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(11) TRUE

(12) Obligation:

Q DP problem:
The TRS P consists of the following rules:

G(s(X)) → G(X)

The TRS R consists of the following rules:

f(X) → cons(X, f(g(X)))
g(0) → s(0)
g(s(X)) → s(s(g(X)))
sel(0, cons(X, Y)) → X
sel(s(X), cons(Y, Z)) → sel(X, Z)

The set Q consists of the following terms:

f(x0)
g(0)
g(s(x0))
sel(0, cons(x0, x1))
sel(s(x0), cons(x1, x2))

We have to consider all minimal (P,Q,R)-chains.

(13) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


G(s(X)) → G(X)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
G(x1)  =  x1
s(x1)  =  s(x1)

Recursive Path Order [RPO].
Precedence:
trivial


The following usable rules [FROCOS05] were oriented: none

(14) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

f(X) → cons(X, f(g(X)))
g(0) → s(0)
g(s(X)) → s(s(g(X)))
sel(0, cons(X, Y)) → X
sel(s(X), cons(Y, Z)) → sel(X, Z)

The set Q consists of the following terms:

f(x0)
g(0)
g(s(x0))
sel(0, cons(x0, x1))
sel(s(x0), cons(x1, x2))

We have to consider all minimal (P,Q,R)-chains.

(15) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(16) TRUE

(17) Obligation:

Q DP problem:
The TRS P consists of the following rules:

F(X) → F(g(X))

The TRS R consists of the following rules:

f(X) → cons(X, f(g(X)))
g(0) → s(0)
g(s(X)) → s(s(g(X)))
sel(0, cons(X, Y)) → X
sel(s(X), cons(Y, Z)) → sel(X, Z)

The set Q consists of the following terms:

f(x0)
g(0)
g(s(x0))
sel(0, cons(x0, x1))
sel(s(x0), cons(x1, x2))

We have to consider all minimal (P,Q,R)-chains.