(0) Obligation:

Q restricted rewrite system:
The TRS R consists of the following rules:

from(X) → cons(X, from(s(X)))
after(0, XS) → XS
after(s(N), cons(X, XS)) → after(N, XS)

Q is empty.

(1) Overlay + Local Confluence (EQUIVALENT transformation)

The TRS is overlay and locally confluent. By [NOC] we can switch to innermost.

(2) Obligation:

Q restricted rewrite system:
The TRS R consists of the following rules:

from(X) → cons(X, from(s(X)))
after(0, XS) → XS
after(s(N), cons(X, XS)) → after(N, XS)

The set Q consists of the following terms:

from(x0)
after(0, x0)
after(s(x0), cons(x1, x2))

(3) DependencyPairsProof (EQUIVALENT transformation)

Using Dependency Pairs [AG00,LPAR04] we result in the following initial DP problem.

(4) Obligation:

Q DP problem:
The TRS P consists of the following rules:

FROM(X) → FROM(s(X))
AFTER(s(N), cons(X, XS)) → AFTER(N, XS)

The TRS R consists of the following rules:

from(X) → cons(X, from(s(X)))
after(0, XS) → XS
after(s(N), cons(X, XS)) → after(N, XS)

The set Q consists of the following terms:

from(x0)
after(0, x0)
after(s(x0), cons(x1, x2))

We have to consider all minimal (P,Q,R)-chains.

(5) DependencyGraphProof (EQUIVALENT transformation)

The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 2 SCCs.

(6) Complex Obligation (AND)

(7) Obligation:

Q DP problem:
The TRS P consists of the following rules:

AFTER(s(N), cons(X, XS)) → AFTER(N, XS)

The TRS R consists of the following rules:

from(X) → cons(X, from(s(X)))
after(0, XS) → XS
after(s(N), cons(X, XS)) → after(N, XS)

The set Q consists of the following terms:

from(x0)
after(0, x0)
after(s(x0), cons(x1, x2))

We have to consider all minimal (P,Q,R)-chains.

(8) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


AFTER(s(N), cons(X, XS)) → AFTER(N, XS)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
AFTER(x1, x2)  =  x1
s(x1)  =  s(x1)
cons(x1, x2)  =  x2
from(x1)  =  from
after(x1, x2)  =  after(x1, x2)
0  =  0

Lexicographic path order with status [LPO].
Quasi-Precedence:
s1 > after2

Status:
s1: [1]
from: []
after2: [2,1]
0: []


The following usable rules [FROCOS05] were oriented:

from(X) → cons(X, from(s(X)))
after(0, XS) → XS
after(s(N), cons(X, XS)) → after(N, XS)

(9) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

from(X) → cons(X, from(s(X)))
after(0, XS) → XS
after(s(N), cons(X, XS)) → after(N, XS)

The set Q consists of the following terms:

from(x0)
after(0, x0)
after(s(x0), cons(x1, x2))

We have to consider all minimal (P,Q,R)-chains.

(10) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(11) TRUE

(12) Obligation:

Q DP problem:
The TRS P consists of the following rules:

FROM(X) → FROM(s(X))

The TRS R consists of the following rules:

from(X) → cons(X, from(s(X)))
after(0, XS) → XS
after(s(N), cons(X, XS)) → after(N, XS)

The set Q consists of the following terms:

from(x0)
after(0, x0)
after(s(x0), cons(x1, x2))

We have to consider all minimal (P,Q,R)-chains.