(0) Obligation:

Q restricted rewrite system:
The TRS R consists of the following rules:

minus(0, Y) → 0
minus(s(X), s(Y)) → minus(X, Y)
geq(X, 0) → true
geq(0, s(Y)) → false
geq(s(X), s(Y)) → geq(X, Y)
div(0, s(Y)) → 0
div(s(X), s(Y)) → if(geq(X, Y), s(div(minus(X, Y), s(Y))), 0)
if(true, X, Y) → X
if(false, X, Y) → Y

Q is empty.

(1) Overlay + Local Confluence (EQUIVALENT transformation)

The TRS is overlay and locally confluent. By [NOC] we can switch to innermost.

(2) Obligation:

Q restricted rewrite system:
The TRS R consists of the following rules:

minus(0, Y) → 0
minus(s(X), s(Y)) → minus(X, Y)
geq(X, 0) → true
geq(0, s(Y)) → false
geq(s(X), s(Y)) → geq(X, Y)
div(0, s(Y)) → 0
div(s(X), s(Y)) → if(geq(X, Y), s(div(minus(X, Y), s(Y))), 0)
if(true, X, Y) → X
if(false, X, Y) → Y

The set Q consists of the following terms:

minus(0, x0)
minus(s(x0), s(x1))
geq(x0, 0)
geq(0, s(x0))
geq(s(x0), s(x1))
div(0, s(x0))
div(s(x0), s(x1))
if(true, x0, x1)
if(false, x0, x1)

(3) DependencyPairsProof (EQUIVALENT transformation)

Using Dependency Pairs [AG00,LPAR04] we result in the following initial DP problem.

(4) Obligation:

Q DP problem:
The TRS P consists of the following rules:

MINUS(s(X), s(Y)) → MINUS(X, Y)
GEQ(s(X), s(Y)) → GEQ(X, Y)
DIV(s(X), s(Y)) → IF(geq(X, Y), s(div(minus(X, Y), s(Y))), 0)
DIV(s(X), s(Y)) → GEQ(X, Y)
DIV(s(X), s(Y)) → DIV(minus(X, Y), s(Y))
DIV(s(X), s(Y)) → MINUS(X, Y)

The TRS R consists of the following rules:

minus(0, Y) → 0
minus(s(X), s(Y)) → minus(X, Y)
geq(X, 0) → true
geq(0, s(Y)) → false
geq(s(X), s(Y)) → geq(X, Y)
div(0, s(Y)) → 0
div(s(X), s(Y)) → if(geq(X, Y), s(div(minus(X, Y), s(Y))), 0)
if(true, X, Y) → X
if(false, X, Y) → Y

The set Q consists of the following terms:

minus(0, x0)
minus(s(x0), s(x1))
geq(x0, 0)
geq(0, s(x0))
geq(s(x0), s(x1))
div(0, s(x0))
div(s(x0), s(x1))
if(true, x0, x1)
if(false, x0, x1)

We have to consider all minimal (P,Q,R)-chains.

(5) DependencyGraphProof (EQUIVALENT transformation)

The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 2 SCCs with 4 less nodes.

(6) Complex Obligation (AND)

(7) Obligation:

Q DP problem:
The TRS P consists of the following rules:

GEQ(s(X), s(Y)) → GEQ(X, Y)

The TRS R consists of the following rules:

minus(0, Y) → 0
minus(s(X), s(Y)) → minus(X, Y)
geq(X, 0) → true
geq(0, s(Y)) → false
geq(s(X), s(Y)) → geq(X, Y)
div(0, s(Y)) → 0
div(s(X), s(Y)) → if(geq(X, Y), s(div(minus(X, Y), s(Y))), 0)
if(true, X, Y) → X
if(false, X, Y) → Y

The set Q consists of the following terms:

minus(0, x0)
minus(s(x0), s(x1))
geq(x0, 0)
geq(0, s(x0))
geq(s(x0), s(x1))
div(0, s(x0))
div(s(x0), s(x1))
if(true, x0, x1)
if(false, x0, x1)

We have to consider all minimal (P,Q,R)-chains.

(8) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


GEQ(s(X), s(Y)) → GEQ(X, Y)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
GEQ(x1, x2)  =  x2
s(x1)  =  s(x1)
minus(x1, x2)  =  x1
0  =  0
geq(x1, x2)  =  geq(x1, x2)
true  =  true
false  =  false
div(x1, x2)  =  div(x1, x2)
if(x1, x2, x3)  =  if(x1, x2, x3)

Lexicographic path order with status [LPO].
Quasi-Precedence:
[geq2, div2] > s1 > [0, true, false, if3]

Status:
s1: [1]
0: []
geq2: [2,1]
true: []
false: []
div2: [2,1]
if3: [1,3,2]


The following usable rules [FROCOS05] were oriented:

minus(0, Y) → 0
minus(s(X), s(Y)) → minus(X, Y)
geq(X, 0) → true
geq(0, s(Y)) → false
geq(s(X), s(Y)) → geq(X, Y)
div(0, s(Y)) → 0
div(s(X), s(Y)) → if(geq(X, Y), s(div(minus(X, Y), s(Y))), 0)
if(true, X, Y) → X
if(false, X, Y) → Y

(9) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

minus(0, Y) → 0
minus(s(X), s(Y)) → minus(X, Y)
geq(X, 0) → true
geq(0, s(Y)) → false
geq(s(X), s(Y)) → geq(X, Y)
div(0, s(Y)) → 0
div(s(X), s(Y)) → if(geq(X, Y), s(div(minus(X, Y), s(Y))), 0)
if(true, X, Y) → X
if(false, X, Y) → Y

The set Q consists of the following terms:

minus(0, x0)
minus(s(x0), s(x1))
geq(x0, 0)
geq(0, s(x0))
geq(s(x0), s(x1))
div(0, s(x0))
div(s(x0), s(x1))
if(true, x0, x1)
if(false, x0, x1)

We have to consider all minimal (P,Q,R)-chains.

(10) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(11) TRUE

(12) Obligation:

Q DP problem:
The TRS P consists of the following rules:

MINUS(s(X), s(Y)) → MINUS(X, Y)

The TRS R consists of the following rules:

minus(0, Y) → 0
minus(s(X), s(Y)) → minus(X, Y)
geq(X, 0) → true
geq(0, s(Y)) → false
geq(s(X), s(Y)) → geq(X, Y)
div(0, s(Y)) → 0
div(s(X), s(Y)) → if(geq(X, Y), s(div(minus(X, Y), s(Y))), 0)
if(true, X, Y) → X
if(false, X, Y) → Y

The set Q consists of the following terms:

minus(0, x0)
minus(s(x0), s(x1))
geq(x0, 0)
geq(0, s(x0))
geq(s(x0), s(x1))
div(0, s(x0))
div(s(x0), s(x1))
if(true, x0, x1)
if(false, x0, x1)

We have to consider all minimal (P,Q,R)-chains.

(13) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


MINUS(s(X), s(Y)) → MINUS(X, Y)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
MINUS(x1, x2)  =  x2
s(x1)  =  s(x1)
minus(x1, x2)  =  x1
0  =  0
geq(x1, x2)  =  geq(x1, x2)
true  =  true
false  =  false
div(x1, x2)  =  div(x1, x2)
if(x1, x2, x3)  =  if(x1, x2, x3)

Lexicographic path order with status [LPO].
Quasi-Precedence:
[geq2, div2] > s1 > [0, true, false, if3]

Status:
s1: [1]
0: []
geq2: [2,1]
true: []
false: []
div2: [2,1]
if3: [1,3,2]


The following usable rules [FROCOS05] were oriented:

minus(0, Y) → 0
minus(s(X), s(Y)) → minus(X, Y)
geq(X, 0) → true
geq(0, s(Y)) → false
geq(s(X), s(Y)) → geq(X, Y)
div(0, s(Y)) → 0
div(s(X), s(Y)) → if(geq(X, Y), s(div(minus(X, Y), s(Y))), 0)
if(true, X, Y) → X
if(false, X, Y) → Y

(14) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

minus(0, Y) → 0
minus(s(X), s(Y)) → minus(X, Y)
geq(X, 0) → true
geq(0, s(Y)) → false
geq(s(X), s(Y)) → geq(X, Y)
div(0, s(Y)) → 0
div(s(X), s(Y)) → if(geq(X, Y), s(div(minus(X, Y), s(Y))), 0)
if(true, X, Y) → X
if(false, X, Y) → Y

The set Q consists of the following terms:

minus(0, x0)
minus(s(x0), s(x1))
geq(x0, 0)
geq(0, s(x0))
geq(s(x0), s(x1))
div(0, s(x0))
div(s(x0), s(x1))
if(true, x0, x1)
if(false, x0, x1)

We have to consider all minimal (P,Q,R)-chains.

(15) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(16) TRUE