(0) Obligation:

Q restricted rewrite system:
The TRS R consists of the following rules:

app(nil, YS) → YS
app(cons(X, XS), YS) → cons(X, app(XS, YS))
from(X) → cons(X, from(s(X)))
zWadr(nil, YS) → nil
zWadr(XS, nil) → nil
zWadr(cons(X, XS), cons(Y, YS)) → cons(app(Y, cons(X, nil)), zWadr(XS, YS))
prefix(L) → cons(nil, zWadr(L, prefix(L)))

Q is empty.

(1) Overlay + Local Confluence (EQUIVALENT transformation)

The TRS is overlay and locally confluent. By [NOC] we can switch to innermost.

(2) Obligation:

Q restricted rewrite system:
The TRS R consists of the following rules:

app(nil, YS) → YS
app(cons(X, XS), YS) → cons(X, app(XS, YS))
from(X) → cons(X, from(s(X)))
zWadr(nil, YS) → nil
zWadr(XS, nil) → nil
zWadr(cons(X, XS), cons(Y, YS)) → cons(app(Y, cons(X, nil)), zWadr(XS, YS))
prefix(L) → cons(nil, zWadr(L, prefix(L)))

The set Q consists of the following terms:

app(nil, x0)
app(cons(x0, x1), x2)
from(x0)
zWadr(nil, x0)
zWadr(x0, nil)
zWadr(cons(x0, x1), cons(x2, x3))
prefix(x0)

(3) DependencyPairsProof (EQUIVALENT transformation)

Using Dependency Pairs [AG00,LPAR04] we result in the following initial DP problem.

(4) Obligation:

Q DP problem:
The TRS P consists of the following rules:

APP(cons(X, XS), YS) → APP(XS, YS)
FROM(X) → FROM(s(X))
ZWADR(cons(X, XS), cons(Y, YS)) → APP(Y, cons(X, nil))
ZWADR(cons(X, XS), cons(Y, YS)) → ZWADR(XS, YS)
PREFIX(L) → ZWADR(L, prefix(L))
PREFIX(L) → PREFIX(L)

The TRS R consists of the following rules:

app(nil, YS) → YS
app(cons(X, XS), YS) → cons(X, app(XS, YS))
from(X) → cons(X, from(s(X)))
zWadr(nil, YS) → nil
zWadr(XS, nil) → nil
zWadr(cons(X, XS), cons(Y, YS)) → cons(app(Y, cons(X, nil)), zWadr(XS, YS))
prefix(L) → cons(nil, zWadr(L, prefix(L)))

The set Q consists of the following terms:

app(nil, x0)
app(cons(x0, x1), x2)
from(x0)
zWadr(nil, x0)
zWadr(x0, nil)
zWadr(cons(x0, x1), cons(x2, x3))
prefix(x0)

We have to consider all minimal (P,Q,R)-chains.

(5) DependencyGraphProof (EQUIVALENT transformation)

The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 4 SCCs with 2 less nodes.

(6) Complex Obligation (AND)

(7) Obligation:

Q DP problem:
The TRS P consists of the following rules:

FROM(X) → FROM(s(X))

The TRS R consists of the following rules:

app(nil, YS) → YS
app(cons(X, XS), YS) → cons(X, app(XS, YS))
from(X) → cons(X, from(s(X)))
zWadr(nil, YS) → nil
zWadr(XS, nil) → nil
zWadr(cons(X, XS), cons(Y, YS)) → cons(app(Y, cons(X, nil)), zWadr(XS, YS))
prefix(L) → cons(nil, zWadr(L, prefix(L)))

The set Q consists of the following terms:

app(nil, x0)
app(cons(x0, x1), x2)
from(x0)
zWadr(nil, x0)
zWadr(x0, nil)
zWadr(cons(x0, x1), cons(x2, x3))
prefix(x0)

We have to consider all minimal (P,Q,R)-chains.

(8) UsableRulesProof (EQUIVALENT transformation)

As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R.

(9) Obligation:

Q DP problem:
The TRS P consists of the following rules:

FROM(X) → FROM(s(X))

R is empty.
The set Q consists of the following terms:

app(nil, x0)
app(cons(x0, x1), x2)
from(x0)
zWadr(nil, x0)
zWadr(x0, nil)
zWadr(cons(x0, x1), cons(x2, x3))
prefix(x0)

We have to consider all minimal (P,Q,R)-chains.

(10) QReductionProof (EQUIVALENT transformation)

We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.[THIEMANN].

app(nil, x0)
app(cons(x0, x1), x2)
from(x0)
zWadr(nil, x0)
zWadr(x0, nil)
zWadr(cons(x0, x1), cons(x2, x3))
prefix(x0)

(11) Obligation:

Q DP problem:
The TRS P consists of the following rules:

FROM(X) → FROM(s(X))

R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(12) Instantiation (EQUIVALENT transformation)

By instantiating [LPAR04] the rule FROM(X) → FROM(s(X)) we obtained the following new rules [LPAR04]:

FROM(s(z0)) → FROM(s(s(z0)))

(13) Obligation:

Q DP problem:
The TRS P consists of the following rules:

FROM(s(z0)) → FROM(s(s(z0)))

R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(14) Instantiation (EQUIVALENT transformation)

By instantiating [LPAR04] the rule FROM(X) → FROM(s(X)) we obtained the following new rules [LPAR04]:

FROM(s(z0)) → FROM(s(s(z0)))

(15) Obligation:

Q DP problem:
The TRS P consists of the following rules:

FROM(s(z0)) → FROM(s(s(z0)))

R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(16) Instantiation (EQUIVALENT transformation)

By instantiating [LPAR04] the rule FROM(s(z0)) → FROM(s(s(z0))) we obtained the following new rules [LPAR04]:

FROM(s(s(z0))) → FROM(s(s(s(z0))))

(17) Obligation:

Q DP problem:
The TRS P consists of the following rules:

FROM(s(s(z0))) → FROM(s(s(s(z0))))

R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(18) NonTerminationProof (EQUIVALENT transformation)

We used the non-termination processor [FROCOS05] to show that the DP problem is infinite.
Found a loop by semiunifying a rule from P directly.

s = FROM(s(s(z0))) evaluates to t =FROM(s(s(s(z0))))

Thus s starts an infinite chain as s semiunifies with t with the following substitutions:
  • Matcher: [z0 / s(z0)]
  • Semiunifier: [ ]




Rewriting sequence

The DP semiunifies directly so there is only one rewrite step from FROM(s(s(z0))) to FROM(s(s(s(z0)))).



(19) FALSE

(20) Obligation:

Q DP problem:
The TRS P consists of the following rules:

APP(cons(X, XS), YS) → APP(XS, YS)

The TRS R consists of the following rules:

app(nil, YS) → YS
app(cons(X, XS), YS) → cons(X, app(XS, YS))
from(X) → cons(X, from(s(X)))
zWadr(nil, YS) → nil
zWadr(XS, nil) → nil
zWadr(cons(X, XS), cons(Y, YS)) → cons(app(Y, cons(X, nil)), zWadr(XS, YS))
prefix(L) → cons(nil, zWadr(L, prefix(L)))

The set Q consists of the following terms:

app(nil, x0)
app(cons(x0, x1), x2)
from(x0)
zWadr(nil, x0)
zWadr(x0, nil)
zWadr(cons(x0, x1), cons(x2, x3))
prefix(x0)

We have to consider all minimal (P,Q,R)-chains.

(21) UsableRulesProof (EQUIVALENT transformation)

As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R.

(22) Obligation:

Q DP problem:
The TRS P consists of the following rules:

APP(cons(X, XS), YS) → APP(XS, YS)

R is empty.
The set Q consists of the following terms:

app(nil, x0)
app(cons(x0, x1), x2)
from(x0)
zWadr(nil, x0)
zWadr(x0, nil)
zWadr(cons(x0, x1), cons(x2, x3))
prefix(x0)

We have to consider all minimal (P,Q,R)-chains.

(23) QReductionProof (EQUIVALENT transformation)

We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.[THIEMANN].

app(nil, x0)
app(cons(x0, x1), x2)
from(x0)
zWadr(nil, x0)
zWadr(x0, nil)
zWadr(cons(x0, x1), cons(x2, x3))
prefix(x0)

(24) Obligation:

Q DP problem:
The TRS P consists of the following rules:

APP(cons(X, XS), YS) → APP(XS, YS)

R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(25) QDPSizeChangeProof (EQUIVALENT transformation)

By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem.

From the DPs we obtained the following set of size-change graphs:

  • APP(cons(X, XS), YS) → APP(XS, YS)
    The graph contains the following edges 1 > 1, 2 >= 2

(26) TRUE

(27) Obligation:

Q DP problem:
The TRS P consists of the following rules:

ZWADR(cons(X, XS), cons(Y, YS)) → ZWADR(XS, YS)

The TRS R consists of the following rules:

app(nil, YS) → YS
app(cons(X, XS), YS) → cons(X, app(XS, YS))
from(X) → cons(X, from(s(X)))
zWadr(nil, YS) → nil
zWadr(XS, nil) → nil
zWadr(cons(X, XS), cons(Y, YS)) → cons(app(Y, cons(X, nil)), zWadr(XS, YS))
prefix(L) → cons(nil, zWadr(L, prefix(L)))

The set Q consists of the following terms:

app(nil, x0)
app(cons(x0, x1), x2)
from(x0)
zWadr(nil, x0)
zWadr(x0, nil)
zWadr(cons(x0, x1), cons(x2, x3))
prefix(x0)

We have to consider all minimal (P,Q,R)-chains.

(28) UsableRulesProof (EQUIVALENT transformation)

As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R.

(29) Obligation:

Q DP problem:
The TRS P consists of the following rules:

ZWADR(cons(X, XS), cons(Y, YS)) → ZWADR(XS, YS)

R is empty.
The set Q consists of the following terms:

app(nil, x0)
app(cons(x0, x1), x2)
from(x0)
zWadr(nil, x0)
zWadr(x0, nil)
zWadr(cons(x0, x1), cons(x2, x3))
prefix(x0)

We have to consider all minimal (P,Q,R)-chains.

(30) QReductionProof (EQUIVALENT transformation)

We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.[THIEMANN].

app(nil, x0)
app(cons(x0, x1), x2)
from(x0)
zWadr(nil, x0)
zWadr(x0, nil)
zWadr(cons(x0, x1), cons(x2, x3))
prefix(x0)

(31) Obligation:

Q DP problem:
The TRS P consists of the following rules:

ZWADR(cons(X, XS), cons(Y, YS)) → ZWADR(XS, YS)

R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(32) QDPSizeChangeProof (EQUIVALENT transformation)

By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem.

From the DPs we obtained the following set of size-change graphs:

  • ZWADR(cons(X, XS), cons(Y, YS)) → ZWADR(XS, YS)
    The graph contains the following edges 1 > 1, 2 > 2

(33) TRUE

(34) Obligation:

Q DP problem:
The TRS P consists of the following rules:

PREFIX(L) → PREFIX(L)

The TRS R consists of the following rules:

app(nil, YS) → YS
app(cons(X, XS), YS) → cons(X, app(XS, YS))
from(X) → cons(X, from(s(X)))
zWadr(nil, YS) → nil
zWadr(XS, nil) → nil
zWadr(cons(X, XS), cons(Y, YS)) → cons(app(Y, cons(X, nil)), zWadr(XS, YS))
prefix(L) → cons(nil, zWadr(L, prefix(L)))

The set Q consists of the following terms:

app(nil, x0)
app(cons(x0, x1), x2)
from(x0)
zWadr(nil, x0)
zWadr(x0, nil)
zWadr(cons(x0, x1), cons(x2, x3))
prefix(x0)

We have to consider all minimal (P,Q,R)-chains.

(35) UsableRulesProof (EQUIVALENT transformation)

As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R.

(36) Obligation:

Q DP problem:
The TRS P consists of the following rules:

PREFIX(L) → PREFIX(L)

R is empty.
The set Q consists of the following terms:

app(nil, x0)
app(cons(x0, x1), x2)
from(x0)
zWadr(nil, x0)
zWadr(x0, nil)
zWadr(cons(x0, x1), cons(x2, x3))
prefix(x0)

We have to consider all minimal (P,Q,R)-chains.

(37) QReductionProof (EQUIVALENT transformation)

We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.[THIEMANN].

app(nil, x0)
app(cons(x0, x1), x2)
from(x0)
zWadr(nil, x0)
zWadr(x0, nil)
zWadr(cons(x0, x1), cons(x2, x3))
prefix(x0)

(38) Obligation:

Q DP problem:
The TRS P consists of the following rules:

PREFIX(L) → PREFIX(L)

R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(39) NonTerminationProof (EQUIVALENT transformation)

We used the non-termination processor [FROCOS05] to show that the DP problem is infinite.
Found a loop by semiunifying a rule from P directly.

s = PREFIX(L) evaluates to t =PREFIX(L)

Thus s starts an infinite chain as s semiunifies with t with the following substitutions:
  • Matcher: [ ]
  • Semiunifier: [ ]




Rewriting sequence

The DP semiunifies directly so there is only one rewrite step from PREFIX(L) to PREFIX(L).



(40) FALSE