(0) Obligation:

Q restricted rewrite system:
The TRS R consists of the following rules:

fst(0, Z) → nil
fst(s(X), cons(Y, Z)) → cons(Y, fst(X, Z))
from(X) → cons(X, from(s(X)))
add(0, X) → X
add(s(X), Y) → s(add(X, Y))
len(nil) → 0
len(cons(X, Z)) → s(len(Z))

Q is empty.

(1) Overlay + Local Confluence (EQUIVALENT transformation)

The TRS is overlay and locally confluent. By [NOC] we can switch to innermost.

(2) Obligation:

Q restricted rewrite system:
The TRS R consists of the following rules:

fst(0, Z) → nil
fst(s(X), cons(Y, Z)) → cons(Y, fst(X, Z))
from(X) → cons(X, from(s(X)))
add(0, X) → X
add(s(X), Y) → s(add(X, Y))
len(nil) → 0
len(cons(X, Z)) → s(len(Z))

The set Q consists of the following terms:

fst(0, x0)
fst(s(x0), cons(x1, x2))
from(x0)
add(0, x0)
add(s(x0), x1)
len(nil)
len(cons(x0, x1))

(3) DependencyPairsProof (EQUIVALENT transformation)

Using Dependency Pairs [AG00,LPAR04] we result in the following initial DP problem.

(4) Obligation:

Q DP problem:
The TRS P consists of the following rules:

FST(s(X), cons(Y, Z)) → FST(X, Z)
FROM(X) → FROM(s(X))
ADD(s(X), Y) → ADD(X, Y)
LEN(cons(X, Z)) → LEN(Z)

The TRS R consists of the following rules:

fst(0, Z) → nil
fst(s(X), cons(Y, Z)) → cons(Y, fst(X, Z))
from(X) → cons(X, from(s(X)))
add(0, X) → X
add(s(X), Y) → s(add(X, Y))
len(nil) → 0
len(cons(X, Z)) → s(len(Z))

The set Q consists of the following terms:

fst(0, x0)
fst(s(x0), cons(x1, x2))
from(x0)
add(0, x0)
add(s(x0), x1)
len(nil)
len(cons(x0, x1))

We have to consider all minimal (P,Q,R)-chains.

(5) DependencyGraphProof (EQUIVALENT transformation)

The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 4 SCCs.

(6) Complex Obligation (AND)

(7) Obligation:

Q DP problem:
The TRS P consists of the following rules:

LEN(cons(X, Z)) → LEN(Z)

The TRS R consists of the following rules:

fst(0, Z) → nil
fst(s(X), cons(Y, Z)) → cons(Y, fst(X, Z))
from(X) → cons(X, from(s(X)))
add(0, X) → X
add(s(X), Y) → s(add(X, Y))
len(nil) → 0
len(cons(X, Z)) → s(len(Z))

The set Q consists of the following terms:

fst(0, x0)
fst(s(x0), cons(x1, x2))
from(x0)
add(0, x0)
add(s(x0), x1)
len(nil)
len(cons(x0, x1))

We have to consider all minimal (P,Q,R)-chains.

(8) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


LEN(cons(X, Z)) → LEN(Z)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
LEN(x1)  =  x1
cons(x1, x2)  =  cons(x1, x2)

Recursive path order with status [RPO].
Precedence:
trivial

Status:
cons2: multiset

The following usable rules [FROCOS05] were oriented: none

(9) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

fst(0, Z) → nil
fst(s(X), cons(Y, Z)) → cons(Y, fst(X, Z))
from(X) → cons(X, from(s(X)))
add(0, X) → X
add(s(X), Y) → s(add(X, Y))
len(nil) → 0
len(cons(X, Z)) → s(len(Z))

The set Q consists of the following terms:

fst(0, x0)
fst(s(x0), cons(x1, x2))
from(x0)
add(0, x0)
add(s(x0), x1)
len(nil)
len(cons(x0, x1))

We have to consider all minimal (P,Q,R)-chains.

(10) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(11) TRUE

(12) Obligation:

Q DP problem:
The TRS P consists of the following rules:

ADD(s(X), Y) → ADD(X, Y)

The TRS R consists of the following rules:

fst(0, Z) → nil
fst(s(X), cons(Y, Z)) → cons(Y, fst(X, Z))
from(X) → cons(X, from(s(X)))
add(0, X) → X
add(s(X), Y) → s(add(X, Y))
len(nil) → 0
len(cons(X, Z)) → s(len(Z))

The set Q consists of the following terms:

fst(0, x0)
fst(s(x0), cons(x1, x2))
from(x0)
add(0, x0)
add(s(x0), x1)
len(nil)
len(cons(x0, x1))

We have to consider all minimal (P,Q,R)-chains.

(13) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


ADD(s(X), Y) → ADD(X, Y)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
ADD(x1, x2)  =  ADD(x1)
s(x1)  =  s(x1)

Recursive path order with status [RPO].
Precedence:
s1 > ADD1

Status:
s1: multiset
ADD1: multiset

The following usable rules [FROCOS05] were oriented: none

(14) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

fst(0, Z) → nil
fst(s(X), cons(Y, Z)) → cons(Y, fst(X, Z))
from(X) → cons(X, from(s(X)))
add(0, X) → X
add(s(X), Y) → s(add(X, Y))
len(nil) → 0
len(cons(X, Z)) → s(len(Z))

The set Q consists of the following terms:

fst(0, x0)
fst(s(x0), cons(x1, x2))
from(x0)
add(0, x0)
add(s(x0), x1)
len(nil)
len(cons(x0, x1))

We have to consider all minimal (P,Q,R)-chains.

(15) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(16) TRUE

(17) Obligation:

Q DP problem:
The TRS P consists of the following rules:

FROM(X) → FROM(s(X))

The TRS R consists of the following rules:

fst(0, Z) → nil
fst(s(X), cons(Y, Z)) → cons(Y, fst(X, Z))
from(X) → cons(X, from(s(X)))
add(0, X) → X
add(s(X), Y) → s(add(X, Y))
len(nil) → 0
len(cons(X, Z)) → s(len(Z))

The set Q consists of the following terms:

fst(0, x0)
fst(s(x0), cons(x1, x2))
from(x0)
add(0, x0)
add(s(x0), x1)
len(nil)
len(cons(x0, x1))

We have to consider all minimal (P,Q,R)-chains.

(18) Obligation:

Q DP problem:
The TRS P consists of the following rules:

FST(s(X), cons(Y, Z)) → FST(X, Z)

The TRS R consists of the following rules:

fst(0, Z) → nil
fst(s(X), cons(Y, Z)) → cons(Y, fst(X, Z))
from(X) → cons(X, from(s(X)))
add(0, X) → X
add(s(X), Y) → s(add(X, Y))
len(nil) → 0
len(cons(X, Z)) → s(len(Z))

The set Q consists of the following terms:

fst(0, x0)
fst(s(x0), cons(x1, x2))
from(x0)
add(0, x0)
add(s(x0), x1)
len(nil)
len(cons(x0, x1))

We have to consider all minimal (P,Q,R)-chains.

(19) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


FST(s(X), cons(Y, Z)) → FST(X, Z)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
FST(x1, x2)  =  FST(x1)
s(x1)  =  s(x1)
cons(x1, x2)  =  cons(x1, x2)

Recursive path order with status [RPO].
Precedence:
trivial

Status:
cons2: multiset
FST1: multiset
s1: multiset

The following usable rules [FROCOS05] were oriented: none

(20) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

fst(0, Z) → nil
fst(s(X), cons(Y, Z)) → cons(Y, fst(X, Z))
from(X) → cons(X, from(s(X)))
add(0, X) → X
add(s(X), Y) → s(add(X, Y))
len(nil) → 0
len(cons(X, Z)) → s(len(Z))

The set Q consists of the following terms:

fst(0, x0)
fst(s(x0), cons(x1, x2))
from(x0)
add(0, x0)
add(s(x0), x1)
len(nil)
len(cons(x0, x1))

We have to consider all minimal (P,Q,R)-chains.

(21) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(22) TRUE