0 QTRS
↳1 Overlay + Local Confluence (⇔)
↳2 QTRS
↳3 DependencyPairsProof (⇔)
↳4 QDP
↳5 DependencyGraphProof (⇔)
↳6 AND
↳7 QDP
↳8 QDPOrderProof (⇔)
↳9 QDP
↳10 PisEmptyProof (⇔)
↳11 TRUE
↳12 QDP
↳13 QDPOrderProof (⇔)
↳14 QDP
↳15 PisEmptyProof (⇔)
↳16 TRUE
↳17 QDP
↳18 QDPOrderProof (⇔)
↳19 QDP
↳20 PisEmptyProof (⇔)
↳21 TRUE
↳22 QDP
↳23 QDPOrderProof (⇔)
↳24 QDP
↳25 PisEmptyProof (⇔)
↳26 TRUE
↳27 QDP
terms(N) → cons(recip(sqr(N)), terms(s(N)))
sqr(0) → 0
sqr(s(X)) → s(add(sqr(X), dbl(X)))
dbl(0) → 0
dbl(s(X)) → s(s(dbl(X)))
add(0, X) → X
add(s(X), Y) → s(add(X, Y))
first(0, X) → nil
first(s(X), cons(Y, Z)) → cons(Y, first(X, Z))
terms(N) → cons(recip(sqr(N)), terms(s(N)))
sqr(0) → 0
sqr(s(X)) → s(add(sqr(X), dbl(X)))
dbl(0) → 0
dbl(s(X)) → s(s(dbl(X)))
add(0, X) → X
add(s(X), Y) → s(add(X, Y))
first(0, X) → nil
first(s(X), cons(Y, Z)) → cons(Y, first(X, Z))
terms(x0)
sqr(0)
sqr(s(x0))
dbl(0)
dbl(s(x0))
add(0, x0)
add(s(x0), x1)
first(0, x0)
first(s(x0), cons(x1, x2))
TERMS(N) → SQR(N)
TERMS(N) → TERMS(s(N))
SQR(s(X)) → ADD(sqr(X), dbl(X))
SQR(s(X)) → SQR(X)
SQR(s(X)) → DBL(X)
DBL(s(X)) → DBL(X)
ADD(s(X), Y) → ADD(X, Y)
FIRST(s(X), cons(Y, Z)) → FIRST(X, Z)
terms(N) → cons(recip(sqr(N)), terms(s(N)))
sqr(0) → 0
sqr(s(X)) → s(add(sqr(X), dbl(X)))
dbl(0) → 0
dbl(s(X)) → s(s(dbl(X)))
add(0, X) → X
add(s(X), Y) → s(add(X, Y))
first(0, X) → nil
first(s(X), cons(Y, Z)) → cons(Y, first(X, Z))
terms(x0)
sqr(0)
sqr(s(x0))
dbl(0)
dbl(s(x0))
add(0, x0)
add(s(x0), x1)
first(0, x0)
first(s(x0), cons(x1, x2))
FIRST(s(X), cons(Y, Z)) → FIRST(X, Z)
terms(N) → cons(recip(sqr(N)), terms(s(N)))
sqr(0) → 0
sqr(s(X)) → s(add(sqr(X), dbl(X)))
dbl(0) → 0
dbl(s(X)) → s(s(dbl(X)))
add(0, X) → X
add(s(X), Y) → s(add(X, Y))
first(0, X) → nil
first(s(X), cons(Y, Z)) → cons(Y, first(X, Z))
terms(x0)
sqr(0)
sqr(s(x0))
dbl(0)
dbl(s(x0))
add(0, x0)
add(s(x0), x1)
first(0, x0)
first(s(x0), cons(x1, x2))
The following pairs can be oriented strictly and are deleted.
The remaining pairs can at least be oriented weakly.
FIRST(s(X), cons(Y, Z)) → FIRST(X, Z)
[terms1, sqr1, dbl1] > [cons1, first1, nil] > recip
[terms1, sqr1, dbl1] > add2 > s1 > recip
0 > [cons1, first1, nil] > recip
s1: [1]
cons1: multiset
terms1: multiset
recip: []
sqr1: [1]
0: multiset
add2: [2,1]
dbl1: [1]
first1: multiset
nil: multiset
terms(N) → cons(recip(sqr(N)), terms(s(N)))
sqr(0) → 0
sqr(s(X)) → s(add(sqr(X), dbl(X)))
dbl(0) → 0
dbl(s(X)) → s(s(dbl(X)))
add(0, X) → X
add(s(X), Y) → s(add(X, Y))
first(0, X) → nil
first(s(X), cons(Y, Z)) → cons(Y, first(X, Z))
terms(N) → cons(recip(sqr(N)), terms(s(N)))
sqr(0) → 0
sqr(s(X)) → s(add(sqr(X), dbl(X)))
dbl(0) → 0
dbl(s(X)) → s(s(dbl(X)))
add(0, X) → X
add(s(X), Y) → s(add(X, Y))
first(0, X) → nil
first(s(X), cons(Y, Z)) → cons(Y, first(X, Z))
terms(x0)
sqr(0)
sqr(s(x0))
dbl(0)
dbl(s(x0))
add(0, x0)
add(s(x0), x1)
first(0, x0)
first(s(x0), cons(x1, x2))
ADD(s(X), Y) → ADD(X, Y)
terms(N) → cons(recip(sqr(N)), terms(s(N)))
sqr(0) → 0
sqr(s(X)) → s(add(sqr(X), dbl(X)))
dbl(0) → 0
dbl(s(X)) → s(s(dbl(X)))
add(0, X) → X
add(s(X), Y) → s(add(X, Y))
first(0, X) → nil
first(s(X), cons(Y, Z)) → cons(Y, first(X, Z))
terms(x0)
sqr(0)
sqr(s(x0))
dbl(0)
dbl(s(x0))
add(0, x0)
add(s(x0), x1)
first(0, x0)
first(s(x0), cons(x1, x2))
The following pairs can be oriented strictly and are deleted.
The remaining pairs can at least be oriented weakly.
ADD(s(X), Y) → ADD(X, Y)
sqr1 > add2 > s1 > [cons, 0, first, nil]
sqr1 > dbl1 > s1 > [cons, 0, first, nil]
s1: [1]
cons: []
sqr1: [1]
0: multiset
add2: [2,1]
dbl1: [1]
first: []
nil: multiset
terms(N) → cons(recip(sqr(N)), terms(s(N)))
sqr(0) → 0
sqr(s(X)) → s(add(sqr(X), dbl(X)))
dbl(0) → 0
dbl(s(X)) → s(s(dbl(X)))
add(0, X) → X
add(s(X), Y) → s(add(X, Y))
first(0, X) → nil
first(s(X), cons(Y, Z)) → cons(Y, first(X, Z))
terms(N) → cons(recip(sqr(N)), terms(s(N)))
sqr(0) → 0
sqr(s(X)) → s(add(sqr(X), dbl(X)))
dbl(0) → 0
dbl(s(X)) → s(s(dbl(X)))
add(0, X) → X
add(s(X), Y) → s(add(X, Y))
first(0, X) → nil
first(s(X), cons(Y, Z)) → cons(Y, first(X, Z))
terms(x0)
sqr(0)
sqr(s(x0))
dbl(0)
dbl(s(x0))
add(0, x0)
add(s(x0), x1)
first(0, x0)
first(s(x0), cons(x1, x2))
DBL(s(X)) → DBL(X)
terms(N) → cons(recip(sqr(N)), terms(s(N)))
sqr(0) → 0
sqr(s(X)) → s(add(sqr(X), dbl(X)))
dbl(0) → 0
dbl(s(X)) → s(s(dbl(X)))
add(0, X) → X
add(s(X), Y) → s(add(X, Y))
first(0, X) → nil
first(s(X), cons(Y, Z)) → cons(Y, first(X, Z))
terms(x0)
sqr(0)
sqr(s(x0))
dbl(0)
dbl(s(x0))
add(0, x0)
add(s(x0), x1)
first(0, x0)
first(s(x0), cons(x1, x2))
The following pairs can be oriented strictly and are deleted.
The remaining pairs can at least be oriented weakly.
DBL(s(X)) → DBL(X)
DBL1 > [s1, first1, nil]
[terms, recip1] > sqr1 > add2 > [s1, first1, nil]
[terms, recip1] > sqr1 > dbl1 > [s1, first1, nil]
0 > [s1, first1, nil]
DBL1: [1]
s1: [1]
terms: multiset
recip1: multiset
sqr1: multiset
0: multiset
add2: multiset
dbl1: [1]
first1: multiset
nil: multiset
terms(N) → cons(recip(sqr(N)), terms(s(N)))
sqr(0) → 0
sqr(s(X)) → s(add(sqr(X), dbl(X)))
dbl(0) → 0
dbl(s(X)) → s(s(dbl(X)))
add(0, X) → X
add(s(X), Y) → s(add(X, Y))
first(0, X) → nil
first(s(X), cons(Y, Z)) → cons(Y, first(X, Z))
terms(N) → cons(recip(sqr(N)), terms(s(N)))
sqr(0) → 0
sqr(s(X)) → s(add(sqr(X), dbl(X)))
dbl(0) → 0
dbl(s(X)) → s(s(dbl(X)))
add(0, X) → X
add(s(X), Y) → s(add(X, Y))
first(0, X) → nil
first(s(X), cons(Y, Z)) → cons(Y, first(X, Z))
terms(x0)
sqr(0)
sqr(s(x0))
dbl(0)
dbl(s(x0))
add(0, x0)
add(s(x0), x1)
first(0, x0)
first(s(x0), cons(x1, x2))
SQR(s(X)) → SQR(X)
terms(N) → cons(recip(sqr(N)), terms(s(N)))
sqr(0) → 0
sqr(s(X)) → s(add(sqr(X), dbl(X)))
dbl(0) → 0
dbl(s(X)) → s(s(dbl(X)))
add(0, X) → X
add(s(X), Y) → s(add(X, Y))
first(0, X) → nil
first(s(X), cons(Y, Z)) → cons(Y, first(X, Z))
terms(x0)
sqr(0)
sqr(s(x0))
dbl(0)
dbl(s(x0))
add(0, x0)
add(s(x0), x1)
first(0, x0)
first(s(x0), cons(x1, x2))
The following pairs can be oriented strictly and are deleted.
The remaining pairs can at least be oriented weakly.
SQR(s(X)) → SQR(X)
SQR1 > [s1, first1, nil]
[terms, recip1] > sqr1 > add2 > [s1, first1, nil]
[terms, recip1] > sqr1 > dbl1 > [s1, first1, nil]
0 > [s1, first1, nil]
SQR1: [1]
s1: [1]
terms: multiset
recip1: multiset
sqr1: multiset
0: multiset
add2: multiset
dbl1: [1]
first1: multiset
nil: multiset
terms(N) → cons(recip(sqr(N)), terms(s(N)))
sqr(0) → 0
sqr(s(X)) → s(add(sqr(X), dbl(X)))
dbl(0) → 0
dbl(s(X)) → s(s(dbl(X)))
add(0, X) → X
add(s(X), Y) → s(add(X, Y))
first(0, X) → nil
first(s(X), cons(Y, Z)) → cons(Y, first(X, Z))
terms(N) → cons(recip(sqr(N)), terms(s(N)))
sqr(0) → 0
sqr(s(X)) → s(add(sqr(X), dbl(X)))
dbl(0) → 0
dbl(s(X)) → s(s(dbl(X)))
add(0, X) → X
add(s(X), Y) → s(add(X, Y))
first(0, X) → nil
first(s(X), cons(Y, Z)) → cons(Y, first(X, Z))
terms(x0)
sqr(0)
sqr(s(x0))
dbl(0)
dbl(s(x0))
add(0, x0)
add(s(x0), x1)
first(0, x0)
first(s(x0), cons(x1, x2))
TERMS(N) → TERMS(s(N))
terms(N) → cons(recip(sqr(N)), terms(s(N)))
sqr(0) → 0
sqr(s(X)) → s(add(sqr(X), dbl(X)))
dbl(0) → 0
dbl(s(X)) → s(s(dbl(X)))
add(0, X) → X
add(s(X), Y) → s(add(X, Y))
first(0, X) → nil
first(s(X), cons(Y, Z)) → cons(Y, first(X, Z))
terms(x0)
sqr(0)
sqr(s(x0))
dbl(0)
dbl(s(x0))
add(0, x0)
add(s(x0), x1)
first(0, x0)
first(s(x0), cons(x1, x2))