0 QTRS
↳1 Overlay + Local Confluence (⇔)
↳2 QTRS
↳3 DependencyPairsProof (⇔)
↳4 QDP
↳5 DependencyGraphProof (⇔)
↳6 AND
↳7 QDP
↳8 QDPOrderProof (⇔)
↳9 QDP
↳10 PisEmptyProof (⇔)
↳11 TRUE
↳12 QDP
↳13 QDPOrderProof (⇔)
↳14 QDP
↳15 PisEmptyProof (⇔)
↳16 TRUE
↳17 QDP
from(X) → cons(X, from(s(X)))
first(0, Z) → nil
first(s(X), cons(Y, Z)) → cons(Y, first(X, Z))
sel(0, cons(X, Z)) → X
sel(s(X), cons(Y, Z)) → sel(X, Z)
from(X) → cons(X, from(s(X)))
first(0, Z) → nil
first(s(X), cons(Y, Z)) → cons(Y, first(X, Z))
sel(0, cons(X, Z)) → X
sel(s(X), cons(Y, Z)) → sel(X, Z)
from(x0)
first(0, x0)
first(s(x0), cons(x1, x2))
sel(0, cons(x0, x1))
sel(s(x0), cons(x1, x2))
FROM(X) → FROM(s(X))
FIRST(s(X), cons(Y, Z)) → FIRST(X, Z)
SEL(s(X), cons(Y, Z)) → SEL(X, Z)
from(X) → cons(X, from(s(X)))
first(0, Z) → nil
first(s(X), cons(Y, Z)) → cons(Y, first(X, Z))
sel(0, cons(X, Z)) → X
sel(s(X), cons(Y, Z)) → sel(X, Z)
from(x0)
first(0, x0)
first(s(x0), cons(x1, x2))
sel(0, cons(x0, x1))
sel(s(x0), cons(x1, x2))
SEL(s(X), cons(Y, Z)) → SEL(X, Z)
from(X) → cons(X, from(s(X)))
first(0, Z) → nil
first(s(X), cons(Y, Z)) → cons(Y, first(X, Z))
sel(0, cons(X, Z)) → X
sel(s(X), cons(Y, Z)) → sel(X, Z)
from(x0)
first(0, x0)
first(s(x0), cons(x1, x2))
sel(0, cons(x0, x1))
sel(s(x0), cons(x1, x2))
The following pairs can be oriented strictly and are deleted.
The remaining pairs can at least be oriented weakly.
SEL(s(X), cons(Y, Z)) → SEL(X, Z)
trivial
trivial
from(X) → cons(X, from(s(X)))
first(0, Z) → nil
first(s(X), cons(Y, Z)) → cons(Y, first(X, Z))
sel(0, cons(X, Z)) → X
sel(s(X), cons(Y, Z)) → sel(X, Z)
from(x0)
first(0, x0)
first(s(x0), cons(x1, x2))
sel(0, cons(x0, x1))
sel(s(x0), cons(x1, x2))
FIRST(s(X), cons(Y, Z)) → FIRST(X, Z)
from(X) → cons(X, from(s(X)))
first(0, Z) → nil
first(s(X), cons(Y, Z)) → cons(Y, first(X, Z))
sel(0, cons(X, Z)) → X
sel(s(X), cons(Y, Z)) → sel(X, Z)
from(x0)
first(0, x0)
first(s(x0), cons(x1, x2))
sel(0, cons(x0, x1))
sel(s(x0), cons(x1, x2))
The following pairs can be oriented strictly and are deleted.
The remaining pairs can at least be oriented weakly.
FIRST(s(X), cons(Y, Z)) → FIRST(X, Z)
trivial
trivial
from(X) → cons(X, from(s(X)))
first(0, Z) → nil
first(s(X), cons(Y, Z)) → cons(Y, first(X, Z))
sel(0, cons(X, Z)) → X
sel(s(X), cons(Y, Z)) → sel(X, Z)
from(x0)
first(0, x0)
first(s(x0), cons(x1, x2))
sel(0, cons(x0, x1))
sel(s(x0), cons(x1, x2))
FROM(X) → FROM(s(X))
from(X) → cons(X, from(s(X)))
first(0, Z) → nil
first(s(X), cons(Y, Z)) → cons(Y, first(X, Z))
sel(0, cons(X, Z)) → X
sel(s(X), cons(Y, Z)) → sel(X, Z)
from(x0)
first(0, x0)
first(s(x0), cons(x1, x2))
sel(0, cons(x0, x1))
sel(s(x0), cons(x1, x2))