(0) Obligation:
Q restricted rewrite system:
The TRS R consists of the following rules:
from(X) → cons(X, from(s(X)))
2ndspos(0, Z) → rnil
2ndspos(s(N), cons(X, cons(Y, Z))) → rcons(posrecip(Y), 2ndsneg(N, Z))
2ndsneg(0, Z) → rnil
2ndsneg(s(N), cons(X, cons(Y, Z))) → rcons(negrecip(Y), 2ndspos(N, Z))
pi(X) → 2ndspos(X, from(0))
plus(0, Y) → Y
plus(s(X), Y) → s(plus(X, Y))
times(0, Y) → 0
times(s(X), Y) → plus(Y, times(X, Y))
square(X) → times(X, X)
Q is empty.
(1) Overlay + Local Confluence (EQUIVALENT transformation)
The TRS is overlay and locally confluent. By [NOC] we can switch to innermost.
(2) Obligation:
Q restricted rewrite system:
The TRS R consists of the following rules:
from(X) → cons(X, from(s(X)))
2ndspos(0, Z) → rnil
2ndspos(s(N), cons(X, cons(Y, Z))) → rcons(posrecip(Y), 2ndsneg(N, Z))
2ndsneg(0, Z) → rnil
2ndsneg(s(N), cons(X, cons(Y, Z))) → rcons(negrecip(Y), 2ndspos(N, Z))
pi(X) → 2ndspos(X, from(0))
plus(0, Y) → Y
plus(s(X), Y) → s(plus(X, Y))
times(0, Y) → 0
times(s(X), Y) → plus(Y, times(X, Y))
square(X) → times(X, X)
The set Q consists of the following terms:
from(x0)
2ndspos(0, x0)
2ndspos(s(x0), cons(x1, cons(x2, x3)))
2ndsneg(0, x0)
2ndsneg(s(x0), cons(x1, cons(x2, x3)))
pi(x0)
plus(0, x0)
plus(s(x0), x1)
times(0, x0)
times(s(x0), x1)
square(x0)
(3) DependencyPairsProof (EQUIVALENT transformation)
Using Dependency Pairs [AG00,LPAR04] we result in the following initial DP problem.
(4) Obligation:
Q DP problem:
The TRS P consists of the following rules:
FROM(X) → FROM(s(X))
2NDSPOS(s(N), cons(X, cons(Y, Z))) → 2NDSNEG(N, Z)
2NDSNEG(s(N), cons(X, cons(Y, Z))) → 2NDSPOS(N, Z)
PI(X) → 2NDSPOS(X, from(0))
PI(X) → FROM(0)
PLUS(s(X), Y) → PLUS(X, Y)
TIMES(s(X), Y) → PLUS(Y, times(X, Y))
TIMES(s(X), Y) → TIMES(X, Y)
SQUARE(X) → TIMES(X, X)
The TRS R consists of the following rules:
from(X) → cons(X, from(s(X)))
2ndspos(0, Z) → rnil
2ndspos(s(N), cons(X, cons(Y, Z))) → rcons(posrecip(Y), 2ndsneg(N, Z))
2ndsneg(0, Z) → rnil
2ndsneg(s(N), cons(X, cons(Y, Z))) → rcons(negrecip(Y), 2ndspos(N, Z))
pi(X) → 2ndspos(X, from(0))
plus(0, Y) → Y
plus(s(X), Y) → s(plus(X, Y))
times(0, Y) → 0
times(s(X), Y) → plus(Y, times(X, Y))
square(X) → times(X, X)
The set Q consists of the following terms:
from(x0)
2ndspos(0, x0)
2ndspos(s(x0), cons(x1, cons(x2, x3)))
2ndsneg(0, x0)
2ndsneg(s(x0), cons(x1, cons(x2, x3)))
pi(x0)
plus(0, x0)
plus(s(x0), x1)
times(0, x0)
times(s(x0), x1)
square(x0)
We have to consider all minimal (P,Q,R)-chains.
(5) DependencyGraphProof (EQUIVALENT transformation)
The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 4 SCCs with 4 less nodes.
(6) Complex Obligation (AND)
(7) Obligation:
Q DP problem:
The TRS P consists of the following rules:
PLUS(s(X), Y) → PLUS(X, Y)
The TRS R consists of the following rules:
from(X) → cons(X, from(s(X)))
2ndspos(0, Z) → rnil
2ndspos(s(N), cons(X, cons(Y, Z))) → rcons(posrecip(Y), 2ndsneg(N, Z))
2ndsneg(0, Z) → rnil
2ndsneg(s(N), cons(X, cons(Y, Z))) → rcons(negrecip(Y), 2ndspos(N, Z))
pi(X) → 2ndspos(X, from(0))
plus(0, Y) → Y
plus(s(X), Y) → s(plus(X, Y))
times(0, Y) → 0
times(s(X), Y) → plus(Y, times(X, Y))
square(X) → times(X, X)
The set Q consists of the following terms:
from(x0)
2ndspos(0, x0)
2ndspos(s(x0), cons(x1, cons(x2, x3)))
2ndsneg(0, x0)
2ndsneg(s(x0), cons(x1, cons(x2, x3)))
pi(x0)
plus(0, x0)
plus(s(x0), x1)
times(0, x0)
times(s(x0), x1)
square(x0)
We have to consider all minimal (P,Q,R)-chains.
(8) Obligation:
Q DP problem:
The TRS P consists of the following rules:
TIMES(s(X), Y) → TIMES(X, Y)
The TRS R consists of the following rules:
from(X) → cons(X, from(s(X)))
2ndspos(0, Z) → rnil
2ndspos(s(N), cons(X, cons(Y, Z))) → rcons(posrecip(Y), 2ndsneg(N, Z))
2ndsneg(0, Z) → rnil
2ndsneg(s(N), cons(X, cons(Y, Z))) → rcons(negrecip(Y), 2ndspos(N, Z))
pi(