(0) Obligation:

Q restricted rewrite system:
The TRS R consists of the following rules:

and(true, X) → X
and(false, Y) → false
if(true, X, Y) → X
if(false, X, Y) → Y
add(0, X) → X
add(s(X), Y) → s(add(X, Y))
first(0, X) → nil
first(s(X), cons(Y, Z)) → cons(Y, first(X, Z))
from(X) → cons(X, from(s(X)))

Q is empty.

(1) Overlay + Local Confluence (EQUIVALENT transformation)

The TRS is overlay and locally confluent. By [NOC] we can switch to innermost.

(2) Obligation:

Q restricted rewrite system:
The TRS R consists of the following rules:

and(true, X) → X
and(false, Y) → false
if(true, X, Y) → X
if(false, X, Y) → Y
add(0, X) → X
add(s(X), Y) → s(add(X, Y))
first(0, X) → nil
first(s(X), cons(Y, Z)) → cons(Y, first(X, Z))
from(X) → cons(X, from(s(X)))

The set Q consists of the following terms:

and(true, x0)
and(false, x0)
if(true, x0, x1)
if(false, x0, x1)
add(0, x0)
add(s(x0), x1)
first(0, x0)
first(s(x0), cons(x1, x2))
from(x0)

(3) DependencyPairsProof (EQUIVALENT transformation)

Using Dependency Pairs [AG00,LPAR04] we result in the following initial DP problem.

(4) Obligation:

Q DP problem:
The TRS P consists of the following rules:

ADD(s(X), Y) → ADD(X, Y)
FIRST(s(X), cons(Y, Z)) → FIRST(X, Z)
FROM(X) → FROM(s(X))

The TRS R consists of the following rules:

and(true, X) → X
and(false, Y) → false
if(true, X, Y) → X
if(false, X, Y) → Y
add(0, X) → X
add(s(X), Y) → s(add(X, Y))
first(0, X) → nil
first(s(X), cons(Y, Z)) → cons(Y, first(X, Z))
from(X) → cons(X, from(s(X)))

The set Q consists of the following terms:

and(true, x0)
and(false, x0)
if(true, x0, x1)
if(false, x0, x1)
add(0, x0)
add(s(x0), x1)
first(0, x0)
first(s(x0), cons(x1, x2))
from(x0)

We have to consider all minimal (P,Q,R)-chains.

(5) DependencyGraphProof (EQUIVALENT transformation)

The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 3 SCCs.

(6) Complex Obligation (AND)

(7) Obligation:

Q DP problem:
The TRS P consists of the following rules:

FROM(X) → FROM(s(X))

The TRS R consists of the following rules:

and(true, X) → X
and(false, Y) → false
if(true, X, Y) → X
if(false, X, Y) → Y
add(0, X) → X
add(s(X), Y) → s(add(X, Y))
first(0, X) → nil
first(s(X), cons(Y, Z)) → cons(Y, first(X, Z))
from(X) → cons(X, from(s(X)))

The set Q consists of the following terms:

and(true, x0)
and(false, x0)
if(true, x0, x1)
if(false, x0, x1)
add(0, x0)
add(s(x0), x1)
first(0, x0)
first(s(x0), cons(x1, x2))
from(x0)

We have to consider all minimal (P,Q,R)-chains.

(8) Obligation:

Q DP problem:
The TRS P consists of the following rules:

FIRST(s(X), cons(Y, Z)) → FIRST(X, Z)

The TRS R consists of the following rules:

and(true, X) → X
and(false, Y) → false
if(true, X, Y) → X
if(false, X, Y) → Y
add(0, X) → X
add(s(X), Y) → s(add(X, Y))
first(0, X) → nil
first(s(X), cons(Y, Z)) → cons(Y, first(X, Z))
from(X) → cons(X, from(s(X)))

The set Q consists of the following terms:

and(true, x0)
and(false, x0)
if(true, x0, x1)
if(false, x0, x1)
add(0, x0)
add(s(x0), x1)
first(0, x0)
first(s(x0), cons(x1, x2))
from(x0)

We have to consider all minimal (P,Q,R)-chains.

(9) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


FIRST(s(X), cons(Y, Z)) → FIRST(X, Z)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
FIRST(x1, x2)  =  FIRST(x2)
s(x1)  =  s
cons(x1, x2)  =  cons(x1, x2)

Recursive Path Order [RPO].
Precedence:
s > FIRST1
cons2 > FIRST1

The following usable rules [FROCOS05] were oriented: none

(10) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

and(true, X) → X
and(false, Y) → false
if(true, X, Y) → X
if(false, X, Y) → Y
add(0, X) → X
add(s(X), Y) → s(add(X, Y))
first(0, X) → nil
first(s(X), cons(Y, Z)) → cons(Y, first(X, Z))
from(X) → cons(X, from(s(X)))

The set Q consists of the following terms:

and(true, x0)
and(false, x0)
if(true, x0, x1)
if(false, x0, x1)
add(0, x0)
add(s(x0), x1)
first(0, x0)
first(s(x0), cons(x1, x2))
from(x0)

We have to consider all minimal (P,Q,R)-chains.

(11) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(12) TRUE

(13) Obligation:

Q DP problem:
The TRS P consists of the following rules:

ADD(s(X), Y) → ADD(X, Y)

The TRS R consists of the following rules:

and(true, X) → X
and(false, Y) → false
if(true, X, Y) → X
if(false, X, Y) → Y
add(0, X) → X
add(s(X), Y) → s(add(X, Y))
first(0, X) → nil
first(s(X), cons(Y, Z)) → cons(Y, first(X, Z))
from(X) → cons(X, from(s(X)))

The set Q consists of the following terms:

and(true, x0)
and(false, x0)
if(true, x0, x1)
if(false, x0, x1)
add(0, x0)
add(s(x0), x1)
first(0, x0)
first(s(x0), cons(x1, x2))
from(x0)

We have to consider all minimal (P,Q,R)-chains.

(14) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


ADD(s(X), Y) → ADD(X, Y)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
ADD(x1, x2)  =  x1
s(x1)  =  s(x1)

Recursive Path Order [RPO].
Precedence:
trivial

The following usable rules [FROCOS05] were oriented: none

(15) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

and(true, X) → X
and(false, Y) → false
if(true, X, Y) → X
if(false, X, Y) → Y
add(0, X) → X
add(s(X), Y) → s(add(X, Y))
first(0, X) → nil
first(s(X), cons(Y, Z)) → cons(Y, first(X, Z))
from(X) → cons(X, from(s(X)))

The set Q consists of the following terms:

and(true, x0)
and(false, x0)
if(true, x0, x1)
if(false, x0, x1)
add(0, x0)
add(s(x0), x1)
first(0, x0)
first(s(x0), cons(x1, x2))
from(x0)

We have to consider all minimal (P,Q,R)-chains.

(16) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(17) TRUE