(0) Obligation:
Q restricted rewrite system:
The TRS R consists of the following rules:
from(X) → cons(X, from(s(X)))
length(nil) → 0
length(cons(X, Y)) → s(length1(Y))
length1(X) → length(X)
Q is empty.
(1) Overlay + Local Confluence (EQUIVALENT transformation)
The TRS is overlay and locally confluent. By [NOC] we can switch to innermost.
(2) Obligation:
Q restricted rewrite system:
The TRS R consists of the following rules:
from(X) → cons(X, from(s(X)))
length(nil) → 0
length(cons(X, Y)) → s(length1(Y))
length1(X) → length(X)
The set Q consists of the following terms:
from(x0)
length(nil)
length(cons(x0, x1))
length1(x0)
(3) DependencyPairsProof (EQUIVALENT transformation)
Using Dependency Pairs [AG00,LPAR04] we result in the following initial DP problem.
(4) Obligation:
Q DP problem:
The TRS P consists of the following rules:
FROM(X) → FROM(s(X))
LENGTH(cons(X, Y)) → LENGTH1(Y)
LENGTH1(X) → LENGTH(X)
The TRS R consists of the following rules:
from(X) → cons(X, from(s(X)))
length(nil) → 0
length(cons(X, Y)) → s(length1(Y))
length1(X) → length(X)
The set Q consists of the following terms:
from(x0)
length(nil)
length(cons(x0, x1))
length1(x0)
We have to consider all minimal (P,Q,R)-chains.
(5) DependencyGraphProof (EQUIVALENT transformation)
The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 2 SCCs.
(6) Complex Obligation (AND)
(7) Obligation:
Q DP problem:
The TRS P consists of the following rules:
LENGTH1(X) → LENGTH(X)
LENGTH(cons(X, Y)) → LENGTH1(Y)
The TRS R consists of the following rules:
from(X) → cons(X, from(s(X)))
length(nil) → 0
length(cons(X, Y)) → s(length1(Y))
length1(X) → length(X)
The set Q consists of the following terms:
from(x0)
length(nil)
length(cons(x0, x1))
length1(x0)
We have to consider all minimal (P,Q,R)-chains.
(8) QDPOrderProof (EQUIVALENT transformation)
We use the reduction pair processor [LPAR04].
The following pairs can be oriented strictly and are deleted.
LENGTH(cons(X, Y)) → LENGTH1(Y)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
LENGTH1(
x1) =
x1
LENGTH(
x1) =
x1
cons(
x1,
x2) =
cons(
x2)
Recursive path order with status [RPO].
Quasi-Precedence:
trivial
Status:
trivial
The following usable rules [FROCOS05] were oriented:
none
(9) Obligation:
Q DP problem:
The TRS P consists of the following rules:
LENGTH1(X) → LENGTH(X)
The TRS R consists of the following rules:
from(X) → cons(X, from(s(X)))
length(nil) → 0
length(cons(X, Y)) → s(length1(Y))
length1(X) → length(X)
The set Q consists of the following terms:
from(x0)
length(nil)
length(cons(x0, x1))
length1(x0)
We have to consider all minimal (P,Q,R)-chains.
(10) DependencyGraphProof (EQUIVALENT transformation)
The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 0 SCCs with 1 less node.
(11) TRUE
(12) Obligation:
Q DP problem:
The TRS P consists of the following rules:
FROM(X) → FROM(s(X))
The TRS R consists of the following rules:
from(X) → cons(X, from(s(X)))
length(nil) → 0
length(cons(X, Y)) → s(length1(Y))
length1(X) → length(X)
The set Q consists of the following terms:
from(x0)
length(nil)
length(cons(x0, x1))
length1(x0)
We have to consider all minimal (P,Q,R)-chains.