(0) Obligation:

Q restricted rewrite system:
The TRS R consists of the following rules:

f(c(s(x), y)) → f(c(x, s(y)))
g(c(x, s(y))) → g(c(s(x), y))
g(s(f(x))) → g(f(x))

Q is empty.

(1) QTRSRRRProof (EQUIVALENT transformation)

Used ordering:
Polynomial interpretation [POLO]:

POL(c(x1, x2)) = x1 + x2   
POL(f(x1)) = x1   
POL(g(x1)) = x1   
POL(s(x1)) = 1 + x1   
With this ordering the following rules can be removed by the rule removal processor [LPAR04] because they are oriented strictly:

g(s(f(x))) → g(f(x))


(2) Obligation:

Q restricted rewrite system:
The TRS R consists of the following rules:

f(c(s(x), y)) → f(c(x, s(y)))
g(c(x, s(y))) → g(c(s(x), y))

Q is empty.

(3) AAECC Innermost (EQUIVALENT transformation)

We have applied [NOC,AAECCNOC] to switch to innermost. The TRS R 1 is none

The TRS R 2 is

f(c(s(x), y)) → f(c(x, s(y)))
g(c(x, s(y))) → g(c(s(x), y))

The signature Sigma is {f, g}

(4) Obligation:

Q restricted rewrite system:
The TRS R consists of the following rules:

f(c(s(x), y)) → f(c(x, s(y)))
g(c(x, s(y))) → g(c(s(x), y))

The set Q consists of the following terms:

f(c(s(x0), x1))
g(c(x0, s(x1)))

(5) DependencyPairsProof (EQUIVALENT transformation)

Using Dependency Pairs [AG00,LPAR04] we result in the following initial DP problem.

(6) Obligation:

Q DP problem:
The TRS P consists of the following rules:

F(c(s(x), y)) → F(c(x, s(y)))
G(c(x, s(y))) → G(c(s(x), y))

The TRS R consists of the following rules:

f(c(s(x), y)) → f(c(x, s(y)))
g(c(x, s(y))) → g(c(s(x), y))

The set Q consists of the following terms:

f(c(s(x0), x1))
g(c(x0, s(x1)))

We have to consider all minimal (P,Q,R)-chains.

(7) DependencyGraphProof (EQUIVALENT transformation)

The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 2 SCCs.

(8) Complex Obligation (AND)

(9) Obligation:

Q DP problem:
The TRS P consists of the following rules:

G(c(x, s(y))) → G(c(s(x), y))

The TRS R consists of the following rules:

f(c(s(x), y)) → f(c(x, s(y)))
g(c(x, s(y))) → g(c(s(x), y))

The set Q consists of the following terms:

f(c(s(x0), x1))
g(c(x0, s(x1)))

We have to consider all minimal (P,Q,R)-chains.

(10) UsableRulesProof (EQUIVALENT transformation)

As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R.

(11) Obligation:

Q DP problem:
The TRS P consists of the following rules:

G(c(x, s(y))) → G(c(s(x), y))

R is empty.
The set Q consists of the following terms:

f(c(s(x0), x1))
g(c(x0, s(x1)))

We have to consider all minimal (P,Q,R)-chains.

(12) QReductionProof (EQUIVALENT transformation)

We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.[THIEMANN].

f(c(s(x0), x1))
g(c(x0, s(x1)))

(13) Obligation:

Q DP problem:
The TRS P consists of the following rules:

G(c(x, s(y))) → G(c(s(x), y))

R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(14) MRRProof (EQUIVALENT transformation)

By using the rule removal processor [LPAR04] with the following ordering, at least one Dependency Pair or term rewrite system rule of this QDP problem can be strictly oriented.
Strictly oriented dependency pairs:

G(c(x, s(y))) → G(c(s(x), y))


Used ordering: Polynomial interpretation [POLO]:

POL(G(x1)) = 2·x1   
POL(c(x1, x2)) = x1 + 2·x2   
POL(s(x1)) = 1 + x1   

(15) Obligation:

Q DP problem:
P is empty.
R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(16) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(17) TRUE

(18) Obligation:

Q DP problem:
The TRS P consists of the following rules:

F(c(s(x), y)) → F(c(x, s(y)))

The TRS R consists of the following rules:

f(c(s(x), y)) → f(c(x, s(y)))
g(c(x, s(y))) → g(c(s(x), y))

The set Q consists of the following terms:

f(c(s(x0), x1))
g(c(x0, s(x1)))

We have to consider all minimal (P,Q,R)-chains.

(19) UsableRulesProof (EQUIVALENT transformation)

As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R.

(20) Obligation:

Q DP problem:
The TRS P consists of the following rules:

F(c(s(x), y)) → F(c(x, s(y)))

R is empty.
The set Q consists of the following terms:

f(c(s(x0), x1))
g(c(x0, s(x1)))

We have to consider all minimal (P,Q,R)-chains.

(21) QReductionProof (EQUIVALENT transformation)

We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.[THIEMANN].

f(c(s(x0), x1))
g(c(x0, s(x1)))

(22) Obligation:

Q DP problem:
The TRS P consists of the following rules:

F(c(s(x), y)) → F(c(x, s(y)))

R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(23) MRRProof (EQUIVALENT transformation)

By using the rule removal processor [LPAR04] with the following ordering, at least one Dependency Pair or term rewrite system rule of this QDP problem can be strictly oriented.
Strictly oriented dependency pairs:

F(c(s(x), y)) → F(c(x, s(y)))


Used ordering: Polynomial interpretation [POLO]:

POL(F(x1)) = 2·x1   
POL(c(x1, x2)) = 2·x1 + x2   
POL(s(x1)) = 1 + x1   

(24) Obligation:

Q DP problem:
P is empty.
R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(25) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(26) TRUE