(0) Obligation:

Q restricted rewrite system:
The TRS R consists of the following rules:

f(c(s(x), y)) → f(c(x, s(y)))
g(c(x, s(y))) → g(c(s(x), y))

Q is empty.

(1) AAECC Innermost (EQUIVALENT transformation)

We have applied [NOC,AAECCNOC] to switch to innermost. The TRS R 1 is none

The TRS R 2 is

f(c(s(x), y)) → f(c(x, s(y)))
g(c(x, s(y))) → g(c(s(x), y))

The signature Sigma is {f, g}

(2) Obligation:

Q restricted rewrite system:
The TRS R consists of the following rules:

f(c(s(x), y)) → f(c(x, s(y)))
g(c(x, s(y))) → g(c(s(x), y))

The set Q consists of the following terms:

f(c(s(x0), x1))
g(c(x0, s(x1)))

(3) DependencyPairsProof (EQUIVALENT transformation)

Using Dependency Pairs [AG00,LPAR04] we result in the following initial DP problem.

(4) Obligation:

Q DP problem:
The TRS P consists of the following rules:

F(c(s(x), y)) → F(c(x, s(y)))
G(c(x, s(y))) → G(c(s(x), y))

The TRS R consists of the following rules:

f(c(s(x), y)) → f(c(x, s(y)))
g(c(x, s(y))) → g(c(s(x), y))

The set Q consists of the following terms:

f(c(s(x0), x1))
g(c(x0, s(x1)))

We have to consider all minimal (P,Q,R)-chains.

(5) DependencyGraphProof (EQUIVALENT transformation)

The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 2 SCCs.

(6) Complex Obligation (AND)

(7) Obligation:

Q DP problem:
The TRS P consists of the following rules:

G(c(x, s(y))) → G(c(s(x), y))

The TRS R consists of the following rules:

f(c(s(x), y)) → f(c(x, s(y)))
g(c(x, s(y))) → g(c(s(x), y))

The set Q consists of the following terms:

f(c(s(x0), x1))
g(c(x0, s(x1)))

We have to consider all minimal (P,Q,R)-chains.

(8) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


G(c(x, s(y))) → G(c(s(x), y))
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
G(x1)  =  x1
c(x1, x2)  =  x2
s(x1)  =  s(x1)

Recursive Path Order [RPO].
Precedence:
trivial

The following usable rules [FROCOS05] were oriented: none

(9) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

f(c(s(x), y)) → f(c(x, s(y)))
g(c(x, s(y))) → g(c(s(x), y))

The set Q consists of the following terms:

f(c(s(x0), x1))
g(c(x0, s(x1)))

We have to consider all minimal (P,Q,R)-chains.

(10) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(11) TRUE

(12) Obligation:

Q DP problem:
The TRS P consists of the following rules:

F(c(s(x), y)) → F(c(x, s(y)))

The TRS R consists of the following rules:

f(c(s(x), y)) → f(c(x, s(y)))
g(c(x, s(y))) → g(c(s(x), y))

The set Q consists of the following terms:

f(c(s(x0), x1))
g(c(x0, s(x1)))

We have to consider all minimal (P,Q,R)-chains.

(13) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


F(c(s(x), y)) → F(c(x, s(y)))
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
F(x1)  =  x1
c(x1, x2)  =  x1
s(x1)  =  s(x1)

Recursive Path Order [RPO].
Precedence:
trivial

The following usable rules [FROCOS05] were oriented: none

(14) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

f(c(s(x), y)) → f(c(x, s(y)))
g(c(x, s(y))) → g(c(s(x), y))

The set Q consists of the following terms:

f(c(s(x0), x1))
g(c(x0, s(x1)))

We have to consider all minimal (P,Q,R)-chains.

(15) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(16) TRUE