0 QTRS
↳1 Overlay + Local Confluence (⇔)
↳2 QTRS
↳3 DependencyPairsProof (⇔)
↳4 QDP
↳5 DependencyGraphProof (⇔)
↳6 AND
↳7 QDP
↳8 QDP
↳9 QDPOrderProof (⇔)
↳10 QDP
↳11 PisEmptyProof (⇔)
↳12 TRUE
f(0) → true
f(1) → false
f(s(x)) → f(x)
if(true, x, y) → x
if(false, x, y) → y
g(s(x), s(y)) → if(f(x), s(x), s(y))
g(x, c(y)) → g(x, g(s(c(y)), y))
f(0) → true
f(1) → false
f(s(x)) → f(x)
if(true, x, y) → x
if(false, x, y) → y
g(s(x), s(y)) → if(f(x), s(x), s(y))
g(x, c(y)) → g(x, g(s(c(y)), y))
f(0)
f(1)
f(s(x0))
if(true, x0, x1)
if(false, x0, x1)
g(s(x0), s(x1))
g(x0, c(x1))
F(s(x)) → F(x)
G(s(x), s(y)) → IF(f(x), s(x), s(y))
G(s(x), s(y)) → F(x)
G(x, c(y)) → G(x, g(s(c(y)), y))
G(x, c(y)) → G(s(c(y)), y)
f(0) → true
f(1) → false
f(s(x)) → f(x)
if(true, x, y) → x
if(false, x, y) → y
g(s(x), s(y)) → if(f(x), s(x), s(y))
g(x, c(y)) → g(x, g(s(c(y)), y))
f(0)
f(1)
f(s(x0))
if(true, x0, x1)
if(false, x0, x1)
g(s(x0), s(x1))
g(x0, c(x1))
F(s(x)) → F(x)
f(0) → true
f(1) → false
f(s(x)) → f(x)
if(true, x, y) → x
if(false, x, y) → y
g(s(x), s(y)) → if(f(x), s(x), s(y))
g(x, c(y)) → g(x, g(s(c(y)), y))
f(0)
f(1)
f(s(x0))
if(true, x0, x1)
if(false, x0, x1)
g(s(x0), s(x1))
g(x0, c(x1))
G(x, c(y)) → G(s(c(y)), y)
G(x, c(y)) → G(x, g(s(c(y)), y))
f(0) → true
f(1) → false
f(s(x)) → f(x)
if(true, x, y) → x
if(false, x, y) → y
g(s(x), s(y)) → if(f(x), s(x), s(y))
g(x, c(y)) → g(x, g(s(c(y)), y))
f(0)
f(1)
f(s(x0))
if(true, x0, x1)
if(false, x0, x1)
g(s(x0), s(x1))
g(x0, c(x1))
The following pairs can be oriented strictly and are deleted.
The remaining pairs can at least be oriented weakly.
G(x, c(y)) → G(s(c(y)), y)
G(x, c(y)) → G(x, g(s(c(y)), y))
G2 > g2 > f > true > s
G2 > g2 > f > false > s
G2 > g2 > if3 > s
c1 > g2 > f > true > s
c1 > g2 > f > false > s
c1 > g2 > if3 > s
0 > s
1 > s
f(0) → true
f(1) → false
f(s(x)) → f(x)
if(true, x, y) → x
if(false, x, y) → y
g(s(x), s(y)) → if(f(x), s(x), s(y))
g(x, c(y)) → g(x, g(s(c(y)), y))
f(0) → true
f(1) → false
f(s(x)) → f(x)
if(true, x, y) → x
if(false, x, y) → y
g(s(x), s(y)) → if(f(x), s(x), s(y))
g(x, c(y)) → g(x, g(s(c(y)), y))
f(0)
f(1)
f(s(x0))
if(true, x0, x1)
if(false, x0, x1)
g(s(x0), s(x1))
g(x0, c(x1))