(0) Obligation:

Q restricted rewrite system:
The TRS R consists of the following rules:

f(0) → true
f(1) → false
f(s(x)) → f(x)
if(true, x, y) → x
if(false, x, y) → y
g(s(x), s(y)) → if(f(x), s(x), s(y))
g(x, c(y)) → g(x, g(s(c(y)), y))

Q is empty.

(1) Overlay + Local Confluence (EQUIVALENT transformation)

The TRS is overlay and locally confluent. By [NOC] we can switch to innermost.

(2) Obligation:

Q restricted rewrite system:
The TRS R consists of the following rules:

f(0) → true
f(1) → false
f(s(x)) → f(x)
if(true, x, y) → x
if(false, x, y) → y
g(s(x), s(y)) → if(f(x), s(x), s(y))
g(x, c(y)) → g(x, g(s(c(y)), y))

The set Q consists of the following terms:

f(0)
f(1)
f(s(x0))
if(true, x0, x1)
if(false, x0, x1)
g(s(x0), s(x1))
g(x0, c(x1))

(3) DependencyPairsProof (EQUIVALENT transformation)

Using Dependency Pairs [AG00,LPAR04] we result in the following initial DP problem.

(4) Obligation:

Q DP problem:
The TRS P consists of the following rules:

F(s(x)) → F(x)
G(s(x), s(y)) → IF(f(x), s(x), s(y))
G(s(x), s(y)) → F(x)
G(x, c(y)) → G(x, g(s(c(y)), y))
G(x, c(y)) → G(s(c(y)), y)

The TRS R consists of the following rules:

f(0) → true
f(1) → false
f(s(x)) → f(x)
if(true, x, y) → x
if(false, x, y) → y
g(s(x), s(y)) → if(f(x), s(x), s(y))
g(x, c(y)) → g(x, g(s(c(y)), y))

The set Q consists of the following terms:

f(0)
f(1)
f(s(x0))
if(true, x0, x1)
if(false, x0, x1)
g(s(x0), s(x1))
g(x0, c(x1))

We have to consider all minimal (P,Q,R)-chains.

(5) DependencyGraphProof (EQUIVALENT transformation)

The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 2 SCCs with 2 less nodes.

(6) Complex Obligation (AND)

(7) Obligation:

Q DP problem:
The TRS P consists of the following rules:

F(s(x)) → F(x)

The TRS R consists of the following rules:

f(0) → true
f(1) → false
f(s(x)) → f(x)
if(true, x, y) → x
if(false, x, y) → y
g(s(x), s(y)) → if(f(x), s(x), s(y))
g(x, c(y)) → g(x, g(s(c(y)), y))

The set Q consists of the following terms:

f(0)
f(1)
f(s(x0))
if(true, x0, x1)
if(false, x0, x1)
g(s(x0), s(x1))
g(x0, c(x1))

We have to consider all minimal (P,Q,R)-chains.

(8) UsableRulesProof (EQUIVALENT transformation)

As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R.

(9) Obligation:

Q DP problem:
The TRS P consists of the following rules:

F(s(x)) → F(x)

R is empty.
The set Q consists of the following terms:

f(0)
f(1)
f(s(x0))
if(true, x0, x1)
if(false, x0, x1)
g(s(x0), s(x1))
g(x0, c(x1))

We have to consider all minimal (P,Q,R)-chains.

(10) QReductionProof (EQUIVALENT transformation)

We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.[THIEMANN].

f(0)
f(1)
f(s(x0))
if(true, x0, x1)
if(false, x0, x1)
g(s(x0), s(x1))
g(x0, c(x1))

(11) Obligation:

Q DP problem:
The TRS P consists of the following rules:

F(s(x)) → F(x)

R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(12) QDPSizeChangeProof (EQUIVALENT transformation)

By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem.

From the DPs we obtained the following set of size-change graphs:

  • F(s(x)) → F(x)
    The graph contains the following edges 1 > 1

(13) TRUE

(14) Obligation:

Q DP problem:
The TRS P consists of the following rules:

G(x, c(y)) → G(s(c(y)), y)
G(x, c(y)) → G(x, g(s(c(y)), y))

The TRS R consists of the following rules:

f(0) → true
f(1) → false
f(s(x)) → f(x)
if(true, x, y) → x
if(false, x, y) → y
g(s(x), s(y)) → if(f(x), s(x), s(y))
g(x, c(y)) → g(x, g(s(c(y)), y))

The set Q consists of the following terms:

f(0)
f(1)
f(s(x0))
if(true, x0, x1)
if(false, x0, x1)
g(s(x0), s(x1))
g(x0, c(x1))

We have to consider all minimal (P,Q,R)-chains.

(15) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


G(x, c(y)) → G(s(c(y)), y)
G(x, c(y)) → G(x, g(s(c(y)), y))
The remaining pairs can at least be oriented weakly.
Used ordering: Polynomial interpretation [POLO]:

POL(0) = 0   
POL(1) = 0   
POL(G(x1, x2)) = x2   
POL(c(x1)) = 1 + x1   
POL(f(x1)) = 0   
POL(false) = 0   
POL(g(x1, x2)) = 0   
POL(if(x1, x2, x3)) = x2 + x3   
POL(s(x1)) = 0   
POL(true) = 0   

The following usable rules [FROCOS05] were oriented:

if(true, x, y) → x
g(s(x), s(y)) → if(f(x), s(x), s(y))
if(false, x, y) → y
g(x, c(y)) → g(x, g(s(c(y)), y))

(16) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

f(0) → true
f(1) → false
f(s(x)) → f(x)
if(true, x, y) → x
if(false, x, y) → y
g(s(x), s(y)) → if(f(x), s(x), s(y))
g(x, c(y)) → g(x, g(s(c(y)), y))

The set Q consists of the following terms:

f(0)
f(1)
f(s(x0))
if(true, x0, x1)
if(false, x0, x1)
g(s(x0), s(x1))
g(x0, c(x1))

We have to consider all minimal (P,Q,R)-chains.

(17) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(18) TRUE